A Current Limiting Strategy to Improve Fault Ride-Through of Inverter Interfaced Autonomous Microgrids

Publikation: Forskning - peer reviewTidsskriftartikel

Abstrakt

With high penetration of distributed energy resources (DER), fault management strategy is of great importance for the distribution network operation. The objective of this paper is to propose a current and voltage limiting strategy to enhance fault ride-through (FRT) capability of inverter-based islanded microgrids (MGs) in which the effects of inverter control system and inverter topology (four/three-wire) are considered. A threephase voltage-sourced inverter (VSI) with multi-loop control system implemented in synchronous, stationary, and natural reference frames is employed in this study for both four- and three-wire configurations. The proposed strategy provides high voltage and current quality during overcurrent conditions, which is necessary for sensitive loads. Several time-domain simulation studies are conducted to investigate the FRT capability of the proposed strategy against both asymmetrical and symmetrical faults. Moreover, the proposed method is tested on the CIGRE benchmark microgrid to demonstrate the effectiveness of the proposed limiting strategy.
Luk

Detaljer

With high penetration of distributed energy resources (DER), fault management strategy is of great importance for the distribution network operation. The objective of this paper is to propose a current and voltage limiting strategy to enhance fault ride-through (FRT) capability of inverter-based islanded microgrids (MGs) in which the effects of inverter control system and inverter topology (four/three-wire) are considered. A threephase voltage-sourced inverter (VSI) with multi-loop control system implemented in synchronous, stationary, and natural reference frames is employed in this study for both four- and three-wire configurations. The proposed strategy provides high voltage and current quality during overcurrent conditions, which is necessary for sensitive loads. Several time-domain simulation studies are conducted to investigate the FRT capability of the proposed strategy against both asymmetrical and symmetrical faults. Moreover, the proposed method is tested on the CIGRE benchmark microgrid to demonstrate the effectiveness of the proposed limiting strategy.
OriginalsprogEngelsk
TidsskriftI E E E Transactions on Smart Grid
Vol/bind8
Tidsskriftsnummer5
Sider (fra-til)2138 - 2148
Antal sider11
ISSN1949-3053
DOI
StatusUdgivet - sep. 2017

Download-statistik

Ingen data tilgængelig
ID: 225753868