A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links

Haoran Wang, Huai Wang, Guorong Zhu, Frede Blaabjerg

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

9 Citationer (Scopus)

Abstract

Many efforts have been made to improve the single-phase power converters with active capacitive DC-link. The purpose is to reduce the overall DC-link energy storage and to achieve a reliable and cost-effective capacitive DC-link solution. A few review papers have already discussed the existing capacitive DCDC- link solutions, but important aspects of the topology assess-ment, such as the total energy storage, overall capacitive energy buffer ratio, cost, and reliability are still not available. This paper proposes a generic topology derivation method of single-phase power converters with capacitive DC-links, which derives all existing topologies to our best knowledge, and identify a few new topologies. A reliability-oriented design process is applied to compare the cost of different solutions with the lifetime target of 10 years and 35 years, respectively. It reveals that the most cost-effective solutions varies with the lifetime target.
OriginalsprogEngelsk
TitelProceedings of the 8th Annual IEEE Energy Conversion Congress and Exposition (ECCE), 2016
Antal sider8
ForlagIEEE Press
Publikationsdatosep. 2016
ISBN (Elektronisk)978-1-5090-0737-0
DOI
StatusUdgivet - sep. 2016
Begivenhed 8th Annual IEEE Energy Conversion Congress & Exposition: ECCE 2016 - Milwaukee, WI, USA
Varighed: 18 sep. 201622 sep. 2016
http://www.ieee-ecce.org/

Konference

Konference 8th Annual IEEE Energy Conversion Congress & Exposition
Land/OmrådeUSA
ByMilwaukee, WI
Periode18/09/201622/09/2016
SponsorIEEE, IEEE Industry Applications Society (IAS), IEEE Power Electronics and Industry Applications Societies (PELS)
Internetadresse

Fingeraftryk

Dyk ned i forskningsemnerne om 'A Generic Topology Derivation Method for Single-phase Converters with Active Capacitive DC-links'. Sammen danner de et unikt fingeraftryk.

Citationsformater