A KALMAN-BASED FUNDAMENTAL FREQUENCY ESTIMATION ALGORITHM

Publikation: Forskning - peer reviewKonferenceartikel i proceeding

Abstrakt

Fundamental frequency estimation is an important task in speech and audio analysis. Harmonic model-based methods typically have superior estimation accuracy. However, such methods usually as- sume that the fundamental frequency and amplitudes are station- ary over a short time frame. In this paper, we propose a Kalman filter-based fundamental frequency estimation algorithm using the harmonic model, where the fundamental frequency and amplitudes can be truly nonstationary by modeling their time variations as first- order Markov chains. The Kalman observation equation is derived from the harmonic model and formulated as a compact nonlinear matrix form, which is further used to derive an extended Kalman filter. Detailed and continuous fundamental frequency and ampli- tude estimates for speech, the sustained vowel /a/ and solo musical tones with vibrato are demonstrated.
Luk

Detaljer

Fundamental frequency estimation is an important task in speech and audio analysis. Harmonic model-based methods typically have superior estimation accuracy. However, such methods usually as- sume that the fundamental frequency and amplitudes are station- ary over a short time frame. In this paper, we propose a Kalman filter-based fundamental frequency estimation algorithm using the harmonic model, where the fundamental frequency and amplitudes can be truly nonstationary by modeling their time variations as first- order Markov chains. The Kalman observation equation is derived from the harmonic model and formulated as a compact nonlinear matrix form, which is further used to derive an extended Kalman filter. Detailed and continuous fundamental frequency and ampli- tude estimates for speech, the sustained vowel /a/ and solo musical tones with vibrato are demonstrated.
OriginalsprogEngelsk
Titel2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA 2017)
Antal sider5
Publikationsdato27 jun. 2017
StatusAccepteret/In press - 27 jun. 2017
ID: 260111039