Characterization of the first “Candidatus nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria

Katharina Kitzinger, Hanna Koch, Sebastian Lücker, Christopher J. Sedlacek, Craig Herbold, Jasmin Schwarz, Anne Daebeler, Anna J. Mueller, Michael Lukumbuzya, Stefano Romano, Nikolaus Leisch, Søren Michael Karst, Rasmus Kirkegaard, Mads Albertsen, Per Halkjær Nielsen, Michael Wagner, Holger Daims*

*Kontaktforfatter

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

88 Citationer (Scopus)
220 Downloads (Pure)

Abstract

Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus “Candidatus Nitrotoga” are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure “Ca. Nitrotoga” culture was available. Here we obtained the first “Ca. Nitrotoga” isolate from activated sludge. This organism, “Candidatus Nitrotoga fabula,” prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous “Ca. Nitrotoga” enrichments, which were described as cold-adapted NOB. “Ca. Nitrotoga fabula” also showed an unusually high tolerance to nitrite (activity at 30 mM NO2 -) and nitrate (up to 25 mM NO3 -). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 μM nitrite and a Vmax of ~28 μmol of nitrite per mg of protein per h. Key metabolic pathways of “Ca. Nitrotoga fabula” were reconstructed from the closed genome. “Ca. Nitrotoga fabula” possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in “Ca. Nitrotoga” and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, “Ca. Nitrotoga fabula” uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable “Ca. Nitrotoga fabula” to survive nitrite depletion and colonize new niches. IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus “Candidatus Nitrotoga” and performed a detailed physiological and genomic characterization of this organism (“Candidatus Nitrotoga fabula”). Differences between key phenotypic properties of “Ca. Nitrotoga fabula” and those of previously enriched “Ca. Nitrotoga” members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that “Ca. Nitrotoga” are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in “Ca. Nitrotoga fabula” expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.

OriginalsprogEngelsk
Artikelnummere01186-18
TidsskriftmBio
Vol/bind9
Udgave nummer4
Antal sider16
ISSN2161-2129
DOI
StatusUdgivet - 1 jul. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Characterization of the first “Candidatus nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria'. Sammen danner de et unikt fingeraftryk.

Citationsformater