Coupled-Inductor-Based DC Current Measurement Technique for Transformerless Grid-Tied Inverters

Ahmed Abdelhakim, Paolo Mattavelli, Dongsheng Yang, Frede Blaabjerg

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

29 Citationer (Scopus)
937 Downloads (Pure)

Abstract

Grid-tied photovoltaic inverters must fulfill several requirements, including high efficiency and reduced cost and complexity of the overall system. Hence, transformerless operation is advantageous in order to achieve the prior requirements. Meanwhile, such operation results in several demerits, such as the dc current component injection into the grid. This component should be effectively mitigated in order to avoid some impacts, such as the saturation of the transformers in the distribution network. On the other hand, limiting this component up to few milliamperes is a challenging issue due to the various measurement errors. Accordingly, different blocking and measurement techniques have been proposed and studied to overcome this issue, where some demerits are seen behind each technique such as the implementation complexity, the common-mode voltage problems, and the high filter requirements. Moreover, none of them measures the dc component directly, but predicts its value using different approaches. Hence, this letter proposes a new technique to measure this dc current component with high accuracy using a coupled inductor combined with a small-range Hall effect current sensor in order to achieve the lowest possible cost with the highest possible accuracy. The proposed technique is introduced, analyzed, and tested experimentally to verify its principle of operation. Also experimental measurement of the dc current component using a 5-kVA transformerless grid-tied voltage-source inverter is introduced with and without the proposed technique in order to validate its operation.
OriginalsprogEngelsk
Artikelnummer7938667
TidsskriftI E E E Transactions on Power Electronics
Vol/bind33
Udgave nummer1
Sider (fra-til)18-23
Antal sider6
ISSN0885-8993
DOI
StatusUdgivet - jan. 2018

Fingeraftryk

Dyk ned i forskningsemnerne om 'Coupled-Inductor-Based DC Current Measurement Technique for Transformerless Grid-Tied Inverters'. Sammen danner de et unikt fingeraftryk.

Citationsformater