Does views to nature and the design of spaces matter? A pain stress experiment

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceabstrakt i proceedingForskningpeer review

Abstract

Previously, we have shown that the design of spaces can influence the physiological stress reaction to psychosocial stress in terms of the stress hormone cortisol [1]. In the current experiment, we examined the physiological reaction to a pain stressor (the Cold Pressor Test). We used three different computer models in a virtual environment (a Cave): a closed room, a room with openings onto an empty landscape potentially allowing for escape, and due to the general consensus that a view to nature is de-stressing [e.g. 2,3,4], a room with a view to nature through the openings. We predicted that we would find the highest cortisol level in the closed room and the lowest one in the room with a view to nature. We measured reactivity of the autonomous nervous system (ANS) with high frequency heart rate variability (parasympathetic activity), and T-wave amplitude (sympathetic activity) recording, and HPAaxis reactivity with saliva cortisol levels. I contrast to the previous experiment with psychosocial stress, there was no significant difference in cortisol levels for any condition. There was no significant difference in ANS activation between the closed and open room, but contrary to consensus, the stress reaction was significantly strongest in the nature condition (fig.1). This might be explained by the fact that our experiment, as far as we know, is the only one in which participants have been exposed to the natural setting during both baseline measurements, stressor and a subsequent de-stressing period, while previous experiments solely have concentrated on the de-stressing effect. We have now tested two different stressors in the same computer model with different outcomes (fig.2), implying that the effect of a space depends on a combination of the design and on the events taking place in the space. This hints at the limitations of architecture as architects can only control the design of the environment and challenges one-to-one designs of studies of reaction to architectural stimuli. As the referred experiments is just two limited studies, this calls for further research and for discussion on the affordances of spaces [5,6].
Luk

Detaljer

Previously, we have shown that the design of spaces can influence the physiological stress reaction to psychosocial stress in terms of the stress hormone cortisol [1]. In the current experiment, we examined the physiological reaction to a pain stressor (the Cold Pressor Test). We used three different computer models in a virtual environment (a Cave): a closed room, a room with openings onto an empty landscape potentially allowing for escape, and due to the general consensus that a view to nature is de-stressing [e.g. 2,3,4], a room with a view to nature through the openings. We predicted that we would find the highest cortisol level in the closed room and the lowest one in the room with a view to nature. We measured reactivity of the autonomous nervous system (ANS) with high frequency heart rate variability (parasympathetic activity), and T-wave amplitude (sympathetic activity) recording, and HPAaxis reactivity with saliva cortisol levels. I contrast to the previous experiment with psychosocial stress, there was no significant difference in cortisol levels for any condition. There was no significant difference in ANS activation between the closed and open room, but contrary to consensus, the stress reaction was significantly strongest in the nature condition (fig.1). This might be explained by the fact that our experiment, as far as we know, is the only one in which participants have been exposed to the natural setting during both baseline measurements, stressor and a subsequent de-stressing period, while previous experiments solely have concentrated on the de-stressing effect. We have now tested two different stressors in the same computer model with different outcomes (fig.2), implying that the effect of a space depends on a combination of the design and on the events taking place in the space. This hints at the limitations of architecture as architects can only control the design of the environment and challenges one-to-one designs of studies of reaction to architectural stimuli. As the referred experiments is just two limited studies, this calls for further research and for discussion on the affordances of spaces [5,6].
Bidragets oversatte titelGør udsigt til natur og rums design en forskel?: Et smerte-stress eksperiment.
OriginalsprogEngelsk
TitelAcademy of neuroscience for Architecture : Shared Behavioral Outcomes
Antal sider2
Udgivelses stedLa Jolla
Publikationsdato22 sep. 2018
Sider68-70
StatusUdgivet - 22 sep. 2018
PublikationsartForskning
Peer reviewJa
BegivenhedAcademy of Neuroscience for Architecture 2018 Conference: Shared behavioral outcomes - SALK Institute for Biological Studies, La Jolla, USA
Varighed: 20 sep. 201822 sep. 2018

Konference

KonferenceAcademy of Neuroscience for Architecture 2018 Conference
LokationSALK Institute for Biological Studies
LandUSA
ByLa Jolla
Periode20/09/201822/09/2018

Download-statistik

Ingen data tilgængelig
ID: 287587645