Energy modelling towards low carbon development of Beijing in 2030

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningpeer review

Abstract

Beijing, as the capacity capital of China, is under the pressure of climate change and pollution. Nonrenewable energy generation and consumption is one of the most important sources of CO2 emissions, which cause climate changes. This paper presents a study on the energy system modeling towards renewable energy and low carbon development for the city of Beijing. The analysis of energy system modeling is organized in two steps to explore the potential renewable energy alternative in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The EnergyPLAN, an energy system analysis tool, is chosen to develop the reference energy model. Secondly, this reference model is used to investigate the alternative energy system for integrating renewable energies. Three scenarios are developed towards the energy system of Beijing in 2030, which are: (i) reference scenario 2030, (ii) BAU (business as usual) scenario 2030 and (iii) RES (renewable energies) scenario 2030. The results shows that the share of renewables can increase to 100% of electricity and heat production in the RE scenario. The primary fuel consumption is reduced to 155.9 TWh, which is 72 % of fuel consumption in the reference scenario 2030.
Luk

Detaljer

Beijing, as the capacity capital of China, is under the pressure of climate change and pollution. Nonrenewable energy generation and consumption is one of the most important sources of CO2 emissions, which cause climate changes. This paper presents a study on the energy system modeling towards renewable energy and low carbon development for the city of Beijing. The analysis of energy system modeling is organized in two steps to explore the potential renewable energy alternative in Beijing. Firstly, a reference energy system of Beijing is created based on the available data in 2014. The EnergyPLAN, an energy system analysis tool, is chosen to develop the reference energy model. Secondly, this reference model is used to investigate the alternative energy system for integrating renewable energies. Three scenarios are developed towards the energy system of Beijing in 2030, which are: (i) reference scenario 2030, (ii) BAU (business as usual) scenario 2030 and (iii) RES (renewable energies) scenario 2030. The results shows that the share of renewables can increase to 100% of electricity and heat production in the RE scenario. The primary fuel consumption is reduced to 155.9 TWh, which is 72 % of fuel consumption in the reference scenario 2030.
OriginalsprogEngelsk
TidsskriftEnergy
Volume/Bind121
Sider (fra-til)107-113
Antal sider7
ISSN0360-5442
DOI
StatusUdgivet - feb. 2017
PublikationsartForskning
Peer reviewJa
ID: 249023470