On Automatic Music Genre Recognition by Sparse Representation Classification using Auditory Temporal Modulations

Publikation: Forskning - peer reviewKonferenceartikel i proceeding

Abstrakt

A recent system combining sparse representation classification (SRC)
and a perceptually-based acoustic feature (ATM)
\cite{Panagakis2009,Panagakis2009b,Panagakis2010c},
outperforms by a significant margin the state of the art in music genre recognition, e.g., \cite{Bergstra2006}.
With genre so difficult to define,
and seemingly based on factors more broad than acoustics,
this remarkable result motivates investigation into, among other things,
why it works and what it means for how humans organize music.
In this paper, we review the application of SRC and ATM to recognizing genre,
and attempt to reproduce the results of \cite{Panagakis2009}.
First, we find that classification results
are consistent for features extracted from different analyses.
Second, we find that SRC accuracy improves
when we pose the sparse representation problem
with inequality constraints.
Finally, we find that only when we reduce the number of classes by half
do we see the high accuracies reported in \cite{Panagakis2009}.
Luk

Detaljer

A recent system combining sparse representation classification (SRC)
and a perceptually-based acoustic feature (ATM)
\cite{Panagakis2009,Panagakis2009b,Panagakis2010c},
outperforms by a significant margin the state of the art in music genre recognition, e.g., \cite{Bergstra2006}.
With genre so difficult to define,
and seemingly based on factors more broad than acoustics,
this remarkable result motivates investigation into, among other things,
why it works and what it means for how humans organize music.
In this paper, we review the application of SRC and ATM to recognizing genre,
and attempt to reproduce the results of \cite{Panagakis2009}.
First, we find that classification results
are consistent for features extracted from different analyses.
Second, we find that SRC accuracy improves
when we pose the sparse representation problem
with inequality constraints.
Finally, we find that only when we reduce the number of classes by half
do we see the high accuracies reported in \cite{Panagakis2009}.
OriginalsprogEngelsk
TitelProceedings of the 9th International Symposium on Computer Music Modeling and Retrieval
Udgivelses stedLondon
Publikationsdato2012
Sider379-394
StatusUdgivet - 2012
Begivenhed - London, Storbritannien

Konference

KonferenceComputer music modeling and retrieval
LandStorbritannien
ByLondon
Periode19/06/201222/06/2012

Download-statistik

Ingen data tilgængelig
ID: 60313217