Radio Propagation Analysis of Industrial Scenarios within the Context of Ultra-Reliable Communication

Publikation: Bidrag til bog/antologi/rapport/konference proceedingKonferenceartikel i proceedingForskningpeer review

21 Citationer (Scopus)
339 Downloads (Pure)

Abstract

One of the 5G use cases, known as ultra-reliable communication (URC), is expected to support very low packet error rate on the order of 10^(−5) with a 1 ms latency. In an industrial scenario, this would make possible replacing wired
connections with wireless for controlling critical processes. Industrial environments with large metallic machinery and concrete structures can lead to deep shadowing and severe fading in the radio propagation channel, and thus pose a challenge for achieving the outage levels in connection with URC. In this paper, we present and analyze the large-scale propagation characteristics of two different industrial environments - open production space and dense factory clutter - based on measurements conducted at 2.3 and 5.7 GHz. By including a large number of spatially distributed samples, as per our experimental approach, we show the importance of properly characterizing the large-scale fading outage for URC. For instance, we show that based on a simple one-slope
distance dependent path loss model, the conventional log-normal model for large-scale shadow fading is by far too simple for this environment. Our results show that at the 10^(−4) percentile, the tail of the shadow fading distribution can deviate by up to 10-20 dB from the log-normal model with respect to the
average NLOS values (around 6 dB and 8 dB at 2.3 and 5.7 GHz, respectively). The simplicity of the one-slope path loss model, and its ability as we show, to express the trends with respect to scenarios, frequencies, and antenna heights, makes it an attractable option. However, there is a need for further experimental insight, possibly in combination with deterministic analysis, to get a better understanding of the large-scale fading for the study of URC in industrial environments.
OriginalsprogEngelsk
Titel2018 IEEE 87th Vehicular Technology Conference (VTC Spring)
Antal sider6
ForlagIEEE
Publikationsdatojul. 2018
Sider1-6
ISBN (Trykt)ISBN: 978-1-5386-6356-1
ISBN (Elektronisk)978-1-5386-6355-4
DOI
StatusUdgivet - jul. 2018
BegivenhedIEEE Vehicular Technology Conference Spring 2018 - Porto, Portugal
Varighed: 3 jun. 20186 jun. 2018
http://www.ieeevtc.org/vtc2018spring/

Konference

KonferenceIEEE Vehicular Technology Conference Spring 2018
Land/OmrådePortugal
ByPorto
Periode03/06/201806/06/2018
Internetadresse
NavnIEEE Vehicular Technology Conference. Proceedings
ISSN1550-2252

Fingeraftryk

Dyk ned i forskningsemnerne om 'Radio Propagation Analysis of Industrial Scenarios within the Context of Ultra-Reliable Communication'. Sammen danner de et unikt fingeraftryk.

Citationsformater