A numerical model for full and partial penetration hybrid laser welding of thick-section steels

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Full and partial penetration welding using high power lasers exhibit different melt pool geometries. The main difference is that full penetration welds tend to widen at the root side. In recent years, full penetration laser welding has been modeled using sophisticated multiphase numerical models. However, less computationally-complex thermo-mechanical models that are capable of accounting for the root widening phenomenon in full penetration laser welding are lacking. In this study, hybrid laser welding was performed for full and partial penetration modes on butt joints of structural steel. A numerical model was presented that used a three-dimensional transient Finite Element (FE) analysis and thermal conduction heat transfer for calculating the temperature fields in both full and partial penetration welding modes. For this purpose, a double-conical volumetric heat source was developed based on the three-dimensional conical (TDC) heat source in the literature. The model was validated and calibrated with different experiments. The results show that the model is capable of calculating the transient temperatures for the common melt pool geometries obtainable by the full and partial penetration hybrid laser welding of thick-section steels. The model can potentially be employed as the basis for predicting e.g. microstructural properties or residual stresses for a given welding procedure.

Close

Details

Full and partial penetration welding using high power lasers exhibit different melt pool geometries. The main difference is that full penetration welds tend to widen at the root side. In recent years, full penetration laser welding has been modeled using sophisticated multiphase numerical models. However, less computationally-complex thermo-mechanical models that are capable of accounting for the root widening phenomenon in full penetration laser welding are lacking. In this study, hybrid laser welding was performed for full and partial penetration modes on butt joints of structural steel. A numerical model was presented that used a three-dimensional transient Finite Element (FE) analysis and thermal conduction heat transfer for calculating the temperature fields in both full and partial penetration welding modes. For this purpose, a double-conical volumetric heat source was developed based on the three-dimensional conical (TDC) heat source in the literature. The model was validated and calibrated with different experiments. The results show that the model is capable of calculating the transient temperatures for the common melt pool geometries obtainable by the full and partial penetration hybrid laser welding of thick-section steels. The model can potentially be employed as the basis for predicting e.g. microstructural properties or residual stresses for a given welding procedure.

Original languageEnglish
JournalOptics & Laser Technology
Volume111
Pages (from-to)671-686
Number of pages16
ISSN0030-3992
DOI
Publication statusPublished - 1 Apr 2019
Publication categoryResearch
Peer-reviewedYes

    Research areas

  • Double-conical, Finite element, Full penetration, Heat source, Laser welding, Numerical modeling, Residual stress
ID: 290839601