A Supervised Approach to Global Signal-to-Noise Ratio Estimation for Whispered and Pathological Voices

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

Abstract

The presence of background noise in signals adversely affects the performance of many speech-based algorithms. Accurate estimation of signal-to-noise-ratio (SNR), as a measure of noise level in a signal, can help in compensating for noise effects. Most existing SNR estimation methods have been developed for normal speech and might not provide accurate estimation for special speech types such as whispered or disordered voices, particularly, when they are corrupted by non-stationary noises. In this paper, we first investigate the impact of stationary and non-stationary noise on the behavior of mel-frequency cepstral coefficients (MFCCs) extracted from normal, whispered and pathological voices. We demonstrate that, regardless of the speech type, the mean and the covariance of MFCCs are predictably modified by additive noise and the amount of change is related to the noise level. Then, we propose a new supervised method for SNR estimation which is based on a regression model trained on MFCCs of the noisy signals. Experimental results show that the proposed approach provides accurate estimation and consistent performance for various speech types under different noise conditions.
Close

Details

The presence of background noise in signals adversely affects the performance of many speech-based algorithms. Accurate estimation of signal-to-noise-ratio (SNR), as a measure of noise level in a signal, can help in compensating for noise effects. Most existing SNR estimation methods have been developed for normal speech and might not provide accurate estimation for special speech types such as whispered or disordered voices, particularly, when they are corrupted by non-stationary noises. In this paper, we first investigate the impact of stationary and non-stationary noise on the behavior of mel-frequency cepstral coefficients (MFCCs) extracted from normal, whispered and pathological voices. We demonstrate that, regardless of the speech type, the mean and the covariance of MFCCs are predictably modified by additive noise and the amount of change is related to the noise level. Then, we propose a new supervised method for SNR estimation which is based on a regression model trained on MFCCs of the noisy signals. Experimental results show that the proposed approach provides accurate estimation and consistent performance for various speech types under different noise conditions.
Original languageEnglish
Title of host publication2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
PublisherIEEE
Publication date2018
DOI
Publication statusPublished - 2018
Publication categoryResearch
Peer-reviewedYes
Event2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) - Calgary, Canada
Duration: 15 Apr 201820 Apr 2018
https://2018.ieeeicassp.org/

Conference

Conference2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
LandCanada
ByCalgary
Periode15/04/201820/04/2018
Internetadresse

Map

Download statistics

No data available
ID: 279628724