An improved droop control method for multi-terminal VSC-HVDC converter stations

Research output: Contribution to journalJournal article

Abstract

Multi-terminal high voltage direct current transmission based on voltage source converter (VSC-HVDC) grids can connect non-synchronous alternating current (AC) grids to a hybrid alternating current and direct current (AC/DC) power system, which is one of the key technologies in the construction of smart grids. However, it is still a problem to control the converter to achieve the function of each AC system sharing the reserve capacity of the entire network. This paper proposes an improved control strategy based on the slope control of the DC voltage and AC frequency (V-f slope control), in which the virtual inertia is introduced. This method can ensure that each AC sub-system shares the primary frequency control function. Additionally, with the new control method, it is easy to apply the secondary frequency control method of traditional AC systems to AC/DC hybrid systems to achieve the steady control of the DC voltage and AC frequency of the whole system. Most importantly, the new control method is better than the traditional control method in terms of dynamic performance. In this paper, a new control method is proposed, and the simulation model has been established in Matlab/Simulink to verify the effectiveness of the proposed control method.
Close

Details

Multi-terminal high voltage direct current transmission based on voltage source converter (VSC-HVDC) grids can connect non-synchronous alternating current (AC) grids to a hybrid alternating current and direct current (AC/DC) power system, which is one of the key technologies in the construction of smart grids. However, it is still a problem to control the converter to achieve the function of each AC system sharing the reserve capacity of the entire network. This paper proposes an improved control strategy based on the slope control of the DC voltage and AC frequency (V-f slope control), in which the virtual inertia is introduced. This method can ensure that each AC sub-system shares the primary frequency control function. Additionally, with the new control method, it is easy to apply the secondary frequency control method of traditional AC systems to AC/DC hybrid systems to achieve the steady control of the DC voltage and AC frequency of the whole system. Most importantly, the new control method is better than the traditional control method in terms of dynamic performance. In this paper, a new control method is proposed, and the simulation model has been established in Matlab/Simulink to verify the effectiveness of the proposed control method.
Original languageEnglish
Article number843
JournalEnergies
Volume10
Issue number7
Number of pages13
ISSN1996-1073
DOI
StatePublished - 2017
Publication categoryResearch
Peer-reviewedYes

    Research areas

  • Frequency control, Hybrid power system, Slope control, Virtual inertia
ID: 261645711