Electrothermal impedance spectroscopy as a cost efficient method for determining thermal parameters of lithium ion batteries: Prospects, measurement methods and the state of knowledge

Research output: Contribution to journalJournal article

Abstract

Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (hybrid electric vehicles, plug-in hybrid electric vehicles, grid support) are becoming more and more power demanding. The increasing charging and discharging power capability rates of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery's temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus, thermal modelling of lithium-ion battery cells and battery packs is gaining importance. Equivalent thermal circuits' models have proven to be relatively accurate with a low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment for parametrization. Recent research initiated by Barsoukov et al. proposed electrothermal impedance spectroscopy as a novel and non-destructive method of characterizing the thermal properties of batteries by defining frequency dependent thermal impedance. Despite its usefulness, the electrothermal impedance spectroscopy method can be still improved in terms of e.g. accuracy and measurement time and it has a potential to be extended to new applications. Performed review indicates that the electrothermal impedance spectroscopy is a very promising, non-destructive, simple and especially cost-efficient method for thermal characterization of batteries. The scientific intention of this paper is to collect and systematize the state of knowledge about electrothermal impedance spectroscopy and present different measurement methods on the example of a high-power lithium battery cell and finally to discuss the prospect.
Close

Details

Current lithium-ion battery research aims in not only increasing their energy density but also power density. Emerging applications of lithium-ion batteries (hybrid electric vehicles, plug-in hybrid electric vehicles, grid support) are becoming more and more power demanding. The increasing charging and discharging power capability rates of lithium-ion batteries raises safety concerns and requires thermal management of the entire battery system. Moreover, lithium-ion battery's temperature influences both battery short term (capacity, efficiency, self-discharge) and long-term (lifetime) behaviour. Thus, thermal modelling of lithium-ion battery cells and battery packs is gaining importance. Equivalent thermal circuits' models have proven to be relatively accurate with a low computational burden for the price of low spatial resolution; nevertheless, they usually require expensive equipment for parametrization. Recent research initiated by Barsoukov et al. proposed electrothermal impedance spectroscopy as a novel and non-destructive method of characterizing the thermal properties of batteries by defining frequency dependent thermal impedance. Despite its usefulness, the electrothermal impedance spectroscopy method can be still improved in terms of e.g. accuracy and measurement time and it has a potential to be extended to new applications. Performed review indicates that the electrothermal impedance spectroscopy is a very promising, non-destructive, simple and especially cost-efficient method for thermal characterization of batteries. The scientific intention of this paper is to collect and systematize the state of knowledge about electrothermal impedance spectroscopy and present different measurement methods on the example of a high-power lithium battery cell and finally to discuss the prospect.
Original languageEnglish
JournalJournal of Cleaner Production
Volume155
Issue numberPart 1
Pages (from-to)63-71
Number of pages9
ISSN0959-6526
DOI
StatePublished - Jul 2017
Publication categoryResearch
Peer-reviewedYes

    Research areas

  • Lithium-ion battery, Electrothermal impedance spectroscopy, Battery thermal model, Thermal impedance
ID: 240833365