Electro-Thermo-Mechanical Analysis of High-Power Press-Pack Insulated Gate Bipolar Transistors under Various Mechanical Clamping Conditions

Adrian Augustin Hasmasan, Cristian Busca, Remus Teodorescu, Lars Helle, Frede Blaabjerg

Research output: Contribution to journalJournal articleResearchpeer-review

54 Citations (Scopus)

Abstract

With the continuously increasing demand for energy and the limited supply of fossil fuels, renewable power sources are becoming ever more important. Knowing that future energy demand will grow, manufacturers are increasing the size of new wind turbines (WTs) in order to reduce the cost of energy production. The reliability of the components has a large impact on the overall cost of a WT, and press-pack (PP) insulated gate bipolar transistors (IGBTs) could be a good solution for future multi-megawatt WTs because of advantages like high power density and reliability. When used in power converters, PP IGBTs are stacked together with other components in a clamping mechanism in order to ensure electrical and thermal contact. Incorrect mechanical clamping of PP IGBTs has a negative impact on their reliability and consequently on the reliability of the WT. In this study the impact of mechanical clamping conditions on the static thermal distribution among chips in PP IGBTs is investigated.
Original languageEnglish
JournalIEEJ Journal of Industry Applications
Volume3
Issue number3
Pages (from-to)192 - 197
Number of pages6
DOIs
Publication statusPublished - 2014

Keywords

  • Press-pack IGBT
  • Mechanical modeling
  • Clamping force
  • Thermal modeling
  • Power loss modeling
  • Reliability

Fingerprint

Dive into the research topics of 'Electro-Thermo-Mechanical Analysis of High-Power Press-Pack Insulated Gate Bipolar Transistors under Various Mechanical Clamping Conditions'. Together they form a unique fingerprint.

Cite this