Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

Alexandros Arsalis, Mads Pagh Nielsen, Søren Knudsen Kær

Research output: Contribution to journalJournal articleResearchpeer-review

13 Citations (Scopus)

Abstract

A 1 kWe micro combined heat and power (CHP) system based on high temperature proton exchange membrane fuel cell (PEMFC) technology is modeled and optimized by formulation and application of a process integration methodology. The system can provide heat and electricity for a singlefamily household. It consists of a fuel cell stack, a fuel processing subsystem, heat exchangers, and balance-of-plant components. The optimization methodology involves system optimization attempting to maximize the net electrical
efficiency, and then by use of a mixed integer nonlinear programming (MINLP) problem formulation, the heat exchange network (HEN) annual cost is minimized. The results show the high potential of the proposed model since high efficiencies are accomplished. The net electrical efficiency and total
system efficiency, based on lower heating value (LHV), are 35.2% and 91.1%, respectively. The minimized total annual cost of the HEN is $8,147 year–1.
Original languageEnglish
JournalFuel Cells
Volume13
Issue number2
Pages (from-to)238-248
Number of pages11
ISSN1615-6846
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology'. Together they form a unique fingerprint.

Cite this