Wind turbine blade life-time assessment model for preventive planning of operation and maintenance

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

Abstract

Out of the total wind turbine failure events, blade damage accounts for a substantial part, with some studies estimating it at around 23%. Current operation and maintenance (O&M) practices typically make use of corrective type maintenance as the basic approach, implying high costs for repair and replacement activities as well as large revenue losses, mainly in the case of offshore wind farms. The recent development and evolution of condition monitoring techniques, as well as the fact that an increasing number of installed turbines are equipped with online monitoring systems, offers a large amount of information on the blades structural health to the decision maker. Further, inspections of the blades are often performed in connection with service. In light of the obtained information, a preventive type of maintenance becomes feasible, with the potential of predicting the blades remaining life to support O&M decisions for avoiding major failure events. The present paper presents a fracture mechanics based model for estimating the remaining life of a wind turbine blade, focusing on the crack propagation in the blades adhesive joints. A generic crack propagation model is built in Matlab based on a Paris law approach. The model is used within a risk-based maintenance decision framework to optimise maintenance planning for the blades lifetime.
Original languageEnglish
Title of host publicationInternational Conference on Safety & Reliability of Ships, Offshore & Subsea Structures : 18th-20th August 2014
Number of pages6
PublisherASRANet Ltd.
Publication date2014
ISBN (Electronic)978-0-9553550-9-7
Publication statusPublished - 2014
EventInternational Conference on Safety & Reliability of Ships, Offshore & Subsea Structures - Glasgow, United Kingdom
Duration: 18 Aug 201420 Aug 2014

Conference

ConferenceInternational Conference on Safety & Reliability of Ships, Offshore & Subsea Structures
Country/TerritoryUnited Kingdom
CityGlasgow
Period18/08/201420/08/2014

Bibliographical note

The proceedings is published on a cd.

Fingerprint

Dive into the research topics of 'Wind turbine blade life-time assessment model for preventive planning of operation and maintenance'. Together they form a unique fingerprint.

Cite this