Grate-firing of biomass for heat and power production

Chungen Yin, Lasse Rosendahl, Søren Knudsen Kær

Research output: Contribution to journalJournal articleResearchpeer-review

417 Citations (Scopus)
3380 Downloads (Pure)

Abstract

As a renewable and environmentally friendly energy source, biomass (i.e., any organic non-fossil fuel) and its utilization are gaining an increasingly important role worldwide Grate-firing is one of the main competing technologies in biomass combustion for heat and power production, because it can fire a wide range of fuels of varying moisture content, and requires less fuel preparation and handling. The basic objective of this paper is to review the state-of-the-art knowledge on grate-fired boilers burning biomass: the key elements in the firing system and the development, the important combustion mechanism, the recent breakthrough in the technology, the most pressing issues, the current research and development activities, and the critical future problems to be resolved. The grate assembly (the most characteristic element in grate-fired boilers), the key combustion mechanism in the fuel bed on the grate, and the advanced secondary air supply (a real breakthrough in this technology) are highlighted for grate-firing systems. Amongst all the issues or problems associated with grate-fired boilers burning biomass, primary pollutant formation and control, deposition formation and corrosion, modelling and computational fluid dynamics (CFD) simulations are discussed in detail. The literature survey and discussions are primarily pertaining to grate-fired boilers burning biomass, though these issues are more or less general. Other technologies (e.g., fluidized bed combustion or suspension combustion) are also mentioned or discussed, to some extent, mainly for comparison and to better illustrate the special characteristics of grate-firing of biomass. Based on these, some critical problems, which may not be sufficiently resolved by the existing efforts and have to be addressed by future research and development, are outlined.
Original languageEnglish
JournalProgress in Energy and Combustion Science
Volume34
Issue number6
Pages (from-to)725-754
Number of pages30
ISSN0360-1285
DOIs
Publication statusPublished - 2008

Keywords

  • Biomass
  • Grate-fired boiler
  • Pollutant emission
  • Particulate matter
  • Deposit formation
  • Corrosion
  • CFD
  • Fluidized bed

Fingerprint

Dive into the research topics of 'Grate-firing of biomass for heat and power production'. Together they form a unique fingerprint.

Cite this