Study on transient stability of wind turbine with induction generator based on variable pitch control strategy

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab/Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system.
Close

Details

In order to enhance and improve the transient stability of a grid-connected wind turbine generator system under the power grid fault, based on typical pitch control strategy of wind turbine, considering the wind turbine system oscillation caused by the drive-train shaft flexibility, Based on Matlab/Simulink, electromagnetic transient state models of the wind tubine generator system and the pitch control models were presented, and the transient behaviors of the wind turbine genarator system using the typical and the proposed pitch control strategies were analyzed and compared when the power grid was subjected to a three-phase short-circuit fault. Also the results were compared with using reactive compensation device. The simulation results show that the proposed pitch control strategy can effectively improve the transient stability of wind turbine generator system.
Original languageEnglish
JournalTaiyang Neng Xuebao
Volume32
Issue number8
Pages (from-to)1230-1236
Number of pages7
ISSN0254-0096
Publication statusPublished - 1 Aug 2011
Publication categoryResearch
Peer-reviewedYes
ID: 65535750