Unileg Thermoelectric Generator Design for Oxide Thermoelectrics and Generalization of the Unileg Design Using an Idealized Metal

Waruna Dissanayaka Wijesooriyage*, Lasse Rosendahl, David R. Brown, G. Jeffrey Snyder

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

9 Citations (Scopus)

Abstract

The unileg thermoelectric generator (U-TEG) is an increasingly popular concept in the design of thermoelectric generators (TEGs). In this study, an oxide U-TEG design for high-temperature applications is introduced. For the unicouple TEG design, Ca3Co4O9 and Al-doped ZnO are used as the p- and n-leg thermoelectric materials, respectively. For the U-TEG design, constantan and Ca3Co4O9 are employed as conductor and semiconductor, respectively. The reduced current approach (RCA) technique is used to design the unicouple TEG and U-TEG in order to obtain the optimal area ratio. When both the unicouple TEG and U-TEG were subjected to a heat flux of 20 W/cm2, the volumetric power density was 0.18 W/cm3 and 0.44 W/cm3, respectively. Thermal shorting between the hot and cold sides of the generator through the highly thermally conducting conductor, which is one of the major drawbacks of the U-TEG, is overcome by using the optimal area ratio for conductor and semiconductor given by the RCA. The results are further confirmed by finite-element analysis using COMSOL Multiphysics software. Furthermore, the U-TEG design is generalized by using an idealized metal with zero Seebeck coefficient. Even though the idealized metal has no impact on the power output of the U-TEG and all the power in the system is generated by the semiconductor, the U-TEG design succeeded in producing a higher volumetric power density than the unicouple TEG design.
Original languageEnglish
JournalJournal of Electronic Materials
Volume44
Issue number6
Pages (from-to)1834-1845
Number of pages12
ISSN0361-5235
DOIs
Publication statusPublished - Jun 2015

Keywords

  • TEG
  • Thermal shorting
  • Thermoelectric
  • Thermoelectric generator
  • Unileg
  • Volumetric power density

Fingerprint

Dive into the research topics of 'Unileg Thermoelectric Generator Design for Oxide Thermoelectrics and Generalization of the Unileg Design Using an Idealized Metal'. Together they form a unique fingerprint.

Cite this