Interharmonics from Grid-Connected PV Systems: Mechanism and Mitigation

Ariya Sangwongwanich, Yongheng Yang, Dezso Sera, Frede Blaabjerg

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

30 Citations (Scopus)
727 Downloads (Pure)

Abstract

As the penetration level of grid-connected Photovoltaic (PV) systems increases, the power quality is one of the major concerns for system operators and the demands are becoming even stricter. The impact of interharmonics on the grid has been acknowledged in recent research when considering a large-scale adoption of PV inverters. However, the origins of interharmonics remain unclear. Thus, this paper performs tests on a commercial PV inverter to explore interharmonic generation and more important investigates the mechanism of interharmonic emission. The investigation reveals that the perturbation of the Maximum Power Point Tracking (MPPT) algorithm is one of the sources that induce interharmonics in the grid current, especially at low-power operating conditions. Accordingly, three mitigation solutions are discussed to address this issue, and simulations have been carried out to verify the effectiveness of the solutions. Simulation results indicate that the constant-voltage MPPT method is the most suitable solution to the mitigation of interharmonics introduced by the MPPT operation, as it avoids the perturbation in the PV voltage during operation.
Original languageEnglish
Title of host publicationProceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)
Number of pages6
PublisherIEEE Press
Publication dateJun 2017
Pages722-727
ISBN (Print)978-1-5090-5157-1
DOIs
Publication statusPublished - Jun 2017
Event2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia) - Kaohsiung, Taiwan, Province of China
Duration: 3 Jun 20177 Jun 2017

Conference

Conference2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia)
Country/TerritoryTaiwan, Province of China
CityKaohsiung
Period03/06/201707/06/2017

Keywords

  • Photovoltaic (PV) systems
  • Inverters
  • Maximum power point tracking (MPPT)
  • Interharmonics
  • Power quality

Fingerprint

Dive into the research topics of 'Interharmonics from Grid-Connected PV Systems: Mechanism and Mitigation'. Together they form a unique fingerprint.

Cite this