Model-based Estimation of Gas Leakage for Fluid Power Accumulators in Wind Turbines

Research output: Contribution to book/anthology/report/conference proceedingArticle in proceedingResearchpeer-review

3 Citations (Scopus)

Abstract

The fluid power accumulator is a high-risk component in the safety shutdown system of most modern wind turbines. Recent studies of failures in wind turbines have shown a high failure rate of such accumulators. This paper proposes an estimation method for detecting one of the most common faults for accumulators, namely gas leakage. The method utilizes an Extended Kalman Filter for joint state and parameter estimation with special attention to limiting the use of sensors to those commonly used in wind turbines. The precision of the method is investigated on an experimental setup which allows for operation of the accumulator similar to the conditions in a turbine. The results show that gas leakage is indeed detectable during start-up of the turbine and robust behavior is achieved in a multi-fault environment where both gas and external fluid leakage occur simultaneously. The estimation precision is shown to be sensitive to initial conditions for the gas temperature and volume.
Original languageDanish
Title of host publicationProceedings of ASME/BATH 2017 Symposium on Fluid Power and Motion Control
Number of pages10
PublisherAmerican Society of Mechanical Engineers
Publication dateOct 2017
Article numberFPMC2017-4253
ISBN (Electronic)978-0-7918-5833-2
DOIs
Publication statusPublished - Oct 2017
EventASME/BATH 2017 Symposium on Fluid Power & Motion Control - Lido Beach Resport, Sarasota, United States
Duration: 16 Oct 201719 Oct 2017
http://www.asmeconferences.org/FPMC2017/

Conference

ConferenceASME/BATH 2017 Symposium on Fluid Power & Motion Control
LocationLido Beach Resport
Country/TerritoryUnited States
CitySarasota
Period16/10/201719/10/2017
Internet address

Cite this