Power Electronics for the Next Generation Wind Turbine System

Research output: Book/ReportPh.D. thesisResearch

Abstract

The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed.

First several potential converter topologies and power semiconductor devices for the future wind power application are presented in respect to the advantages/drawbacks. And then the criteria for evaluating the wind power converter are generally discussed, where the importance of thermal stress in the power semiconductors is emphasized and a multidisciplinary approach for the stress analysis is introduced. Based on the proposed criteria and tools, the electrical and thermal behaviors of wind power converters are investigated under both normal and fault conditions, where the factors of wind speeds, grid codes, converter controls and grid conditions are taken into account.

In order to relieve the electrical and thermal stress of the converter in wind turbine system, some new control methods and concepts are thereby proposed. In Chapter 4 a thermal control concept which utilizes the reactive power is used to stabilize the thermal excursion under wind gust. In Chapter 5 a series of special modulation methods which can achieve better thermal loading of power devices under grid faults are introduced. Also in Chapter 5 a series of power control strategies utilizing the zero sequence current are presented to achieve better control performance under the unbalanced AC source.

It is concluded that power electronics will play more important role and regulate all the generated power in the next generation wind turbine system. In this case, the stress in the converter components becomes more critical because the power conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important performance for the next generation wind power converter. It is found that the thermal behaviors of wind power converter could be rather adverse under some required operating conditions. On the other hand it is also possible to improve the thermal behaviors by many aspects like the smart control, special modulation, advanced modeling, as well as new converter designs.
Close

Details

The wind power generation has been steadily growing both for the total installed capacity and for the individual turbine size. Due to much more significant impacts to the power grid, the power electronics, which can change the behavior of wind turbines from an unregulated power source to an active generation unit, are becoming crucial in the wind turbine system. The objective of this project is to study the power electronics technology used for the next generation wind turbines. Some emerging challenges as well as potentials like the cost of energy and reliability are going to be addressed.

First several potential converter topologies and power semiconductor devices for the future wind power application are presented in respect to the advantages/drawbacks. And then the criteria for evaluating the wind power converter are generally discussed, where the importance of thermal stress in the power semiconductors is emphasized and a multidisciplinary approach for the stress analysis is introduced. Based on the proposed criteria and tools, the electrical and thermal behaviors of wind power converters are investigated under both normal and fault conditions, where the factors of wind speeds, grid codes, converter controls and grid conditions are taken into account.

In order to relieve the electrical and thermal stress of the converter in wind turbine system, some new control methods and concepts are thereby proposed. In Chapter 4 a thermal control concept which utilizes the reactive power is used to stabilize the thermal excursion under wind gust. In Chapter 5 a series of special modulation methods which can achieve better thermal loading of power devices under grid faults are introduced. Also in Chapter 5 a series of power control strategies utilizing the zero sequence current are presented to achieve better control performance under the unbalanced AC source.

It is concluded that power electronics will play more important role and regulate all the generated power in the next generation wind turbine system. In this case, the stress in the converter components becomes more critical because the power conversion is pushed to multi-MW level with high power density requirement. It has also been revealed that thermal stress in the power semiconductors is closely related to many determining factors in the wind power application like the reliability, cost, power density, etc. therefore it is an important performance for the next generation wind power converter. It is found that the thermal behaviors of wind power converter could be rather adverse under some required operating conditions. On the other hand it is also possible to improve the thermal behaviors by many aspects like the smart control, special modulation, advanced modeling, as well as new converter designs.
Original languageEnglish
PublisherDepartment of Energy Technology, Aalborg University
Number of pages236
ISBN (Print)978-87-92846-28-0
Publication statusPublished - 2013
Publication categoryResearch
ID: 145616480