Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

Valérie Turcot, Yingchang Lu, Heather M Highland, Claudia Schurmann, Anne E Justice, Rebecca S Fine, Jonathan P Bradfield, Tõnu Esko, Ayush Giri, Mariaelisa Graff, Xiuqing Guo, Audrey E Hendricks, Tugce Karaderi, Adelheid Lempradl, Adam E Locke, Anubha Mahajan, Eirini Marouli, Suthesh Sivapalaratnam, Kristin L Young, Tamuno AlfredMary F Feitosa, Nicholas G D Masca, Alisa K Manning, Carolina Medina-Gomez, Poorva Mudgal, Maggie C Y Ng, Alex P Reiner, Sailaja Vedantam, Sara M Willems, Thomas W Winkler, Gonçalo Abecasis, Katja K Aben, Dewan S Alam, Sameer E Alharthi, Matthew Allison, Philippe Amouyel, Folkert W Asselbergs, Paul L Auer, Beverley Balkau, Lia E Bang, Inês Barroso, Lisa Bastarache, Marianne Benn, Sven Bergmann, Lawrence F Bielak, Matthias Blüher, Michael Boehnke, Heiner Boeing, Eric Boerwinkle, Torben Jørgensen, CHD Exome+ Consortium

Research output: Contribution to journalJournal articleResearchpeer-review

235 Citations (Scopus)

Abstract

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

Original languageEnglish
JournalNature Genetics
Volume50
Issue number1
Pages (from-to)26-41
Number of pages16
ISSN1061-4036
DOIs
Publication statusPublished - 2018

Bibliographical note

Publisher Corrections:
1.
In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article (doi: 10.1038/s41588-018-0082-3).
2.
In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article (doi: 10.1038/s41588-018-0050-y).
3.
In the HTML version of this article initially published, the author groups ‘CHD Exome+ Consortium’, ‘EPIC-CVD Consortium’, ‘ExomeBP Consortium’, ‘Global Lipids Genetic Consortium’, ‘GoT2D Genes Consortium’, ‘EPIC InterAct Consortium’, ‘INTERVAL Study’, ‘ReproGen Consortium’, ‘T2D-Genes Consortium’, ‘The MAGIC Investigators’ and ‘Understanding Society Scientific Group’ appeared at the end of the author list but should have appeared earlier in the list, after author Krina T. Zondervan. The errors have been corrected in the HTML version of the article. (doi.:10.1038/s41588-019-0447-2 )

Keywords

  • Journal Article

Fingerprint

Dive into the research topics of 'Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity'. Together they form a unique fingerprint.

Cite this