Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes

Sílvia Bonàs-Guarch, Marta Guindo-Martínez, Irene Miguel-Escalada, Niels Grarup, David Sebastian, Elias Rodriguez-Fos, Friman Sánchez, Mercè Planas-Fèlix, Paula Cortes-Sánchez, Santi González, Pascal Timshel, Tune H Pers, Claire C Morgan, Ignasi Moran, Goutham Atla, Juan R González, Montserrat Puiggros, Jonathan Martí, Ehm A Andersson, Carlos DíazRosa M Badia, Miriam Udler, Aaron Leong, Varindepal Kaur, Jason Flannick, Torben Jørgensen, Allan Linneberg, Marit E Jørgensen, Daniel R Witte, Cramer Christensen, Ivan Brandslund, Emil V Appel, Robert A Scott, Jian'an Luan, Claudia Langenberg, Nicholas J Wareham, Oluf Pedersen, Antonio Zorzano, Jose C Florez, Torben Hansen, Jorge Ferrer, Josep Maria Mercader, David Torrents

Research output: Contribution to journalJournal articleResearchpeer-review

69 Citations (Scopus)

Abstract

The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

Original languageEnglish
Article number321
JournalNature Communications
Volume9
Issue number1
Number of pages14
ISSN2041-1723
DOIs
Publication statusPublished - 1 Dec 2018

Bibliographical note

Erratum published in "Nature Communications" (2018) vol. 9, issue 1, artikel no. 2162.
www.nature.com/articles/s41467-018-04170-3.

Keywords

  • Journal Article

Fingerprint

Dive into the research topics of 'Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes'. Together they form a unique fingerprint.

Cite this