Reconstruction Algorithms in Undersampled AFM Imaging

Publication: Research - peer-reviewJournal article

Abstract

This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby the scanning time as well as the amount of interaction between the AFM probe and the specimen. It can easily be applied on conventional AFM hardware. Due to undersampling, it is then necessary to further process the acquired image in order to reconstruct an approximation of the image. Based on real AFM cell images, our simulations reveal that using a simple raster scanning pattern in combination with conventional image interpolation performs very well. Moreover, this combination enables a reduction by a factor 10 of the scanning time while retaining an average reconstruction quality around 36 dB PSNR on the tested cell images.
Close

Details

This paper provides a study of spatial undersampling in atomic force microscopy (AFM) imaging followed by different image reconstruction techniques based on sparse approximation as well as interpolation. The main reasons for using undersampling is that it reduces the path length and thereby the scanning time as well as the amount of interaction between the AFM probe and the specimen. It can easily be applied on conventional AFM hardware. Due to undersampling, it is then necessary to further process the acquired image in order to reconstruct an approximation of the image. Based on real AFM cell images, our simulations reveal that using a simple raster scanning pattern in combination with conventional image interpolation performs very well. Moreover, this combination enables a reduction by a factor 10 of the scanning time while retaining an average reconstruction quality around 36 dB PSNR on the tested cell images.
Original languageEnglish
JournalI E E E Journal on Selected Topics in Signal Processing
Volume10
Issue number1
Pages (from-to)31-46
ISSN1932-4553
DOI
StatePublished - 1 Feb 2016

    Keywords

  • Atomic Force Microscopy, undersampling, Image Reconstruction, sparse approximation, Interpolation, Compressed Sensing

Download statistics

No data available
ID: 221020372