Study on material properties effect for maximization of thermoelectricpower generation

Meysam Karami Rad, Alireza Rezaniakolaei, Mahmoud Omid, Ali Rajabipour, Lasse Aistrup Rosendahl

Research output: Contribution to journalJournal articleResearchpeer-review

27 Citations (Scopus)

Abstract

Thermoelectric generators (TEGs) have mostly been used in niche applications due to the low efficiency. This study aims to evaluate the effect of different material transport properties such as Seebeck coefficient, thermal conductivity, and electrical resistivity, on the system-level performance of the TEGs. A mathematical model was developed in MATLAB and verified by the experimental data to evaluate various thermoelectric (TE) materials with unit figure of merit (ZT = 1) and with a diverse combination of properties. The results shows increment in the power factor with a factor of 15, which corresponds an enhancement in the thermal conductivity by factor of 13.33 for fixed ZT, can increase the power output up to 45%. The results moreover shows, higher power factor has more impact on the power generation at lower fill factors (FFs) and smaller thermal resistance of the heat sink and heat source.
Original languageEnglish
JournalRenewable Energy
Volume138
Pages (from-to)236-242
Number of pages7
ISSN0960-1481
DOIs
Publication statusPublished - Aug 2019

Keywords

  • Thermoelectric module
  • Figure of merit
  • Power factor
  • Maximum power generation

Fingerprint

Dive into the research topics of 'Study on material properties effect for maximization of thermoelectricpower generation'. Together they form a unique fingerprint.

Cite this