Aalborg Universitet
AALBORG UNIVERSITY

DENMARK

Adding Timing Requirements to the CODARTS Real-Time Software Design Method

Bach, K.R.

Publication date:
1999

Document Version
Ogsa kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):
Bach, K. R. (1999). Adding Timing Requirements to the CODARTS Real-Time Software Design Method.
Department of Control Engineering.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at von@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 24, 2024

https://vbn.aau.dk/da/publications/1d3ba070-0033-11da-b4d5-000ea68e967b

Adding Timing Requirements to the
CODARTS Real-Time Software Design
Method

Keld Ramstedt P. Bach - keld@control.auc.dk

Abstract— The CODARTS software design method consid-
eres how concurrent, distributed and real-time applications
can be designed. Although accounting for the important is-
sues of task and communication, the method does not pro-
vide means for expressing the timeliness of the tasks and
communication directly in the design as is otherwise the
case with tasks and communication specifics. In this paper
we propose an extension scheme which will enable for spec-
ifying timing requirements for tasks and communications
within the CODARTS model.

Keywords— Computer system design, real-time systems,
timing specification.

I. INTRODUCTION

With the immense growth in the use of real-time
systems, there is also a need to express and de-
sign the functionality of these at an abstract level
since the systems becomes more and more com-
plex. A number of software design methods exists
to accomplish this issue. [1] gives an elaborate dis-
cussion of various design methods and concludes
with developing the CODARTS model.

The contribution of the CODARTS model to
the software design phase, is mainly the idea of
task structuring and details about communication
e.g., if asynchronous buffers etc. should be used.

The CODARTS model describes task structur-
ing and communication in concurrent, distributed,
and real-time systems but does not address the
issue of direct timely specification in the design
phase.

The purpose of this paper is to introduce some
methods to help specifying and verifying timely
behavior of tasks and communication in the CO-
DARTS scheme.

II. CODARTS

Dept. of Control Engineering, Aalborg University, 9220 Aalborg East,
Denmark

When designing real-time systems using the CO-
DARTS model, the following seven steps must be
applied:
1. Develop environmental model. This is based
on the COBRA method for analysing and mod-
eling the problem domain.

2. Structure the system into distributed sub-systems.

This step is only necessary if the system to be
developed has a distributed nature.

3. Structure the system or sub-systems into con-
current tasks.

4. Structure the system into information hiding
modules.

5. Integrate task and modules views.

6. Define component interface specifications.

7. Develop software incrementally.

The above roughly ends up first with a task ar-
chitecture diagram and then finally the system ar-
chitecture diagrams (SADs) for both the overall
system and for the subsystems which are then the
actual graphical designs. The SAD is constructed
graphically using the approaches described in fig-
ure 1.

As an example, consider figure 2 of a software
architecture diagram for a robot controler system:

As it can be seen, no indication of real-time
specifications are given explicitly. Although guide-
lines for modeling tasks and communication are
present, no method of specifying real-time behav-
ior for these in the design are addressed.

For a more elaborate discussion of the CODARTS
method and the necessary steps, please refer to [1].

ITII. CODARTS+
We have seen that CODARTS does not provide
means for expressing real-time requirements in the
design. In order to do this, we must first look at

Task

)

Procedure

Information Hiding Module (IHM)

Function

L oosely-Coupled Message
Communication - FIFO
Message Queue

Loosely-Coupled Message
Communication - Prioritized
Message Queue

Tightly-Coupled Message
Communication w/Reply

Tightly-Coupled Message
Communication without Reply

— [
— 10—
[3>
—
—— .

Event

Fig. 1. Basics of SAD’s

which timely requirements are needed for the task
and communication entitites.

In real-time systems, tasks and communication
may have timely behavior. In fact, they nearl al-
ways do. Dependent on the type of real-time sys-
tem, all or some of the following issues may be
applied to tasks:

e The tasks’ needed CPU resources. In order
to assess the period of a task, one must also
define the CPU resources needed for a given
task. The CPU resources are the total amount
of computation time needed to finish a spe-
cific task, which may also include communi-
cation overhead times, context switch times,
and interrupt handler times.

e The tasks’ periodicity. This is the regularity
by which the task must be executed. This is
a constant factor, i.e., it doesn’t vary over
time since the intention with having hard-
real-time system is responsiveness and pre-
dictability. To enforce these issues, entities
are typically sampled periodically and tasks
are also invoked periodically. If a tasks’ pe-
riod changes then it becomes difficult to pre-
dict the behavior. Also, per definition, a pe-
riodic occurrence is in fact an event occur-
ring again and again, at constant intervals.

Robot
Program

Interpreter

Process
Actuator Output
Event

Actuator

Output DIM
Process
Sensor Input

Event

-
Timer

\/ 5
8
2
o
<
B 8
2/l & 3
V-
2 =
£ 05
x
& <2
Q
56 ©
DE
8l m =
K| s ™ B é =
2lE = 538 g A
= %] Sm < x 2
Egldze i Ak
SlE1e@E tﬁém < <
E L3
= Is]
2|8
¢ 0%
28 >
s fg% <m [5
g se |8 5
os% = <3
& g
<
[}
— <
o}
Rt g 5 =
’lgg mgg m% £wd
= 8 &< &8 8§§
Sy 3
g3
88

Input DIM

=]

Control Panel
Input Handler

g

T =

= 5

H £2

o] 5=

£)/ 22

S= 55

23 oo
SE

Fig. 2. Software Architecture Diagram for Robot Control System

Although aperiodic events may occur in hard
real-time systems, these events may be served
by periodic sporadic servers.

The tasks’ deadlines. In some periodic sys-
tems, the deadlines for a task for which it
must complete, lies implicitly in the periodic-
ity of the task. l.e., in order to maintain the
periodicity of executing the task again and
again, the task of course must have a dead-
line that are no later than the next scheduled
execution of the same task. However, in some
situations the task may have a specified dead-
line that is earlier or later than the end of its
period.

The tasks’ release times. The release times of
a task is typically also the start of its period.

However, it might be the case that a task has 5

to wait for a certain event to occur (within gé s - ﬁg -
some deadline of course), before it can spin & § gg[%] : Eg :
off. ™ 5 ; :

e Penalty value for tasks missing deadlines. The

[10, 125, -, -,

values may be all that is measurable, e.g., ac- fgg, @ %;

tual time compared to predefined values of e C £

missing a deadline. The higher the value, the

bigger penalty is likely to occur to a given Y

task. Hence, lower priority tasks are assigned & &E’Fl -
lower penalty values. This applies to sched- e EF

ulers using, e.g., the best-effort technique where
the tasks with the highest penalty values are
scheduled first in order to avoid the penalty
using an EDF strategy [2].

“La
Motion

Robot Command Processor

Motion
Block
]
Acknowledgements
Axis Controller
AxisDIM

Command Handler

For communication, the following may be used:

e - o
e Response times. This is the maximum re- 8 E §§ § 28 <s I %
ponse time for a message to be acknowledged = @ =08 i%g
by the receipient, i.e., maximum transfer time & §
for a message. = %]33 <
e Number of messages in a queue. By assign- : Ef 38] 23
ing maximum number of messages in a queue 15?%; = 5= g%
(queue length), it is possible to predict worst-] 53 B
[o=]

case message handling times for messages. In

addition, if this number is exceeded when mes-

sages are buffered then something may be wrong

somewhere in the system, e.g., either the send-

ing task is Submlttlng messages too fast, OI Fig. 3. Software Architecture Diagram for Robot Control System with
e . it Real-Time Specification Tuples

the receiving task is admitting messages too

5, 500,

Control Panel
Output Interrupt

ontrol Panel
Inputlngupt

slow.

In our model we enhance the CODARTS model 200 time units after the task has commenced
with tuples to signify the needed real-time require- its execution. In the previous example 1, the
ments. For tasks we need a quintuple denoting deadline was defined implicit in the period,
the above mentioned issues. For communication i_e_’ deadline and period were equal_
we need a duple. For convenience we will attach 3. [7, 100, -, 10, -]. The connotation of this is
these tuples to the associated graphic entities in a task having a CPU requirement of 7 time
CODARTS as depicted on figure 3. units, a period (and deadline) of 100, and re-

lease time of 10. Hence, the task must be
commenced within 10 time units from the start

The following shows a few examples of the use of
of its periods.

tuples:
4. [55, 375, -, -, 65]. Here, a task has CPU
L. [25, 200’_ R ']'- Here:, the tuple denotes requirements of 55 time units, a period of 375,
a t.ask with 25 Flme units Of. CPU resource and a penalty of missing that deadline of 65.
claims and a period of 200 units. The penalty value is used in, e.g., the best-
2. [17, 350, 200, -, -]. This is a tuple where the effort approach.

associated task has 17 time units of CPU re-
quirements, a period of 350, and a deadline of For communication the tuples will be:

REFERENCES

1. {5,—}. This tuple is attached to message
with the requirement that that messages be
delivered within 5 time units. This could be
applied to messages with reply.

2. {—,9}. Here a queue may only hold maxi-
mum 9 messages at a time. No timing re-
quirements are present.

3. {8,4}. This is associated with a message queue.

It says that a message must take no longer
than 8 time units while in transfer from one
task to another, and that the queue may only
hold up to 4 messages at a time. This corre-
sponds to multiple messages with replys.

The tuples may in the final implementation of
an actual design program based on CODARTS be
hidden so that they only appears when the entities
are highlighted (clicked).

The aim of having the tuples located on the
SAD graphical layout are:

1. Clarification of real-time behavior of each en-
tity in question. By attaching the tuples to
the actual entities (task and communication),
a larger deal of clearness occurs. Also, the tu-
ples may be changed at will in the subsystems
they belong to.

2. Support for low-level processing of tuple val-
ues. l.e., the values may be used by, e.g., the
operating system for various purposes. This
requires a tool to extract the tuple informa-
tion to the operating system. One could eas-
ily imagine that the values be used for, e.g.,
scheduling purposes.

IV. CONCLUSION

In this paper we started out by showing that the
CODARTS software design method does not of-
fer means for specifying real-time requirements in
the design (graphical layout). Then we developed
our own model, CODARTS+, which uses tuples to
express the timeliness of tasks and communcation
in the design. It does so by the assigning appro-
priate values connected to these entities in tuples
attached graphically to the design.

REFERENCES

[1] H. Gomaa, Software Design Methods for Con-
current and Real-Time Systems. Addison-
Wesley, 1993. ISBN: 0-201-52577-1.

[2] C. D. Locke, Best-Effort Decision Making for
Real-Time Scheduling. PhD thesis, CMU-
(CS-86-134, Carnegie Mellon University, Pitts-
burgh, PA, USA., May 1986.

