B9K - B10K projektforslag inden for Vand & Jord
Andersen, Lars Vabbersgaard; Augustesen, Anders Hust; Andersen, Thomas Lykke; Sørensen, Carsten Steen; Burcharth, Hans Falk; Brorsen, Michael; Ibsen, Lars Bo

Publication date: 2007

Document Version Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: januar 07, 2019
B9K – B10K projektforslag inden for Vand & Jord

Lars Andersen
Anders Augustesen
Thomas Lykke Andersen
Carsten S. Sørensen
Hans F. Burcharth
Michael Brorsen
Lars Bo Ibsen
DCE Latest News No. 3

B9K – B10K projektforslag inden for Vand & Jord

by

Lars Andersen
Anders Augustesen
Thomas Lykke Andersen
Carsten S. Sørensen
Hans F. Burchard
Michael Brorsen
Lars Bo Ibsen

May 2007

© Aalborg University
Scientific Publications at the Department of Civil Engineering

Technical Reports are published for timely dissemination of research results and scientific work carried out at the Department of Civil Engineering (DCE) at Aalborg University. This medium allows publication of more detailed explanations and results than typically allowed in scientific journals.

Technical Memoranda are produced to enable the preliminary dissemination of scientific work by the personnel of the DCE where such release is deemed to be appropriate. Documents of this kind may be incomplete or temporary versions of papers—or part of continuing work. This should be kept in mind when references are given to publications of this kind.

Contract Reports are produced to report scientific work carried out under contract. Publications of this kind contain confidential matter and are reserved for the sponsors and the DCE. Therefore, Contract Reports are generally not available for public circulation.

Lecture Notes contain material produced by the lecturers at the DCE for educational purposes. This may be scientific notes, lecture books, example problems or manuals for laboratory work, or computer programs developed at the DCE.

Theses are monograms or collections of papers published to report the scientific work carried out at the DCE to obtain a degree as either PhD or Doctor of Technology. The thesis is publicly available after the defence of the degree.

Latest News is published to enable rapid communication of information about scientific work carried out at the DCE. This includes the status of research projects, developments in the laboratories, information about collaborative work and recent research results.
B9K – B10K projektforslag inden for Vand & Jord

- Run-up genererede slammingkraft på adgangsplatforme til offshore-vindmøller
- Fritspændsanalyse af rørledning fra offshore installation
- Skalaeffekter relationer til bølgeopskyl
- Korrekt bestemmelse af bølgekraft på offshore-fundamenter ved modelforsøg
- Vibrationer fra trafik på ”smukke” gader
- Egenskaber af sand omkring pæle udsat for scour
- Den virtuelle bølgerende
- Egenskaber af anisotropisk jord
- Store horisontalt påvirkede pæle
- Stabilitet af geotekniske konstruktioner
- Bøttefundamentets styrke- og deformationsegskaber ved cyklisk belastning
- Bøttefundamentets styrke- og deformationsegskaber ved installation i ler
- Dessign af erosionsbeskyttelse til offshore-vindmøller
- Scour-beskyttelse omkring bøttefundament

Studerende på B9K og B10K, som har interesse i vandbygning og geoteknik, er velkomne til at henvende sig til en af undertegnede.

Med venlig hilsen,

Anders Augustesen (AA) Thomas Lykke Andersen (TLA)
Carsten S. Sørensen (CSS) Michael Brorsen (MB)
Lars Bo Ibsen (LBI) Hans F. Burcharth (HFB)
Lars Andersen (LA)
Run-up genererede slammingkræfter på adgangsplatforme til offshore-vindmøller

Formål: Når en brydende bølge rammer ind mod en pæl kan der genereres et ret stort opskyl på pælen. Dette kan give anledning til ret store belastninger på adgangsplatformen. Typisk slamming tryk op til 50 mVs. Da man ikke tog højde for de meget store påvirkninger ved design af Horns Rev 1, er der observeret store beskadigelser på en del af adgangsplatformene.

I forbindelse med design af fundamenterne til Horns Rev 2 blev der på Aalborg Universitet udført forsøg til klarlægning af opskylshøjden på pælen og de belastningerne opskyllet genererer på platformen. Disse forsøg benyttes nu til design af Horns Rev 2.

Sammenligning af video og målinger udført på DHI har dog sandsynliggjort at et målesystem bestående af elevationsmålere af modstandstypen ikke er optimalt. Hvis man kan klarlægge usikkerheden på de udførte opskyls målinger mere præcis, kan design belastningerne sandsynligvis reduceres med 10-30%.

I dette projekt ønskes undersøgt forskellige eksperimentelle målemetoder til bestemmelse af opskylshøjden undersøgt og deres usikkerheder belyses. Den bedste metode udvælges og en beregningsmodel kalibreres ud fra en række forsøg med denne metode.

Indhold:
- Bestemmelse af opskylshøjde ved elevationsmåler af modstandstypen,
- Bestemmelse af opskylshøjde ved video,
- Bestemmelse af opskylshøjde ved step gauge,
- Kalibrering af run-up beregningsmodel,
- Kalibrering af slammingkraftmodel,
- Alternative platformsløsninger.

Vejleder: TLA
Teori: ☐ ☐ ☐ **Forsøg:** ☐ ☐ ☐ **EDB:** ☐ ☐ ☐
Fritspændsanalyse af rørledning fra offshore installation

Formål: Kraften på en rørledning er primært ekspansionskraften fra varmen tilført fra det gennemstrømmende olie/gas. Ved vertikale (sekundært laterale) imperfektiønser kan rørledningen boje op (eulerlast) med stor risiko for at rørledningen kollapser (Upheaval Buckling). Den krævede modstand mod udbøjning er en funktion af mediets temperatur og imperfektiønens højde og længde. Denne modstand opnås under installationen ved at nedgrave rørledningen og i tilfælde af efterfølgende konstatering af imperfektiøner ved stendækning.

De udførte fritspænds analyser indeholder dels brudgrænsetilstand (Ultimate Limit State) og dels udmattelse (Fatigue Limit State) analyser. I begge tilfælde kan der forekomme svingninger fra hvirveldannelse (Vortex Induced Vibrations), der dels bidrager til forøgelse af spændingerne i røret samt potentielt udgør et stort bidrag til udmattelsesskaden på grund af det store antal cykler. Dette kan både være udmattelse i rørledningen og udmattelse i jorden hvor der måske er en potentiel mulighed for at rørledningen så at sige bliver vibreret ud af jorden og en større længde bliver frit lagt.

Indhold: Følgende punkter kan indgå i arbejdet:

- Bestemmelse af lasten på røret (hydrodynamisk last på rør ved havbund).
- Etablere bedre jord/rør interface ved indspændinger.
- Bestemmelse af dæmpning (inklusive jord dæmpning).
- Risikovurdering mht. brud i jord/rørledning pga. belastningen på rørledningen.
- Analyse af tilladeligt fritspænd ved kollision med anker.

Vejleder: TLA, LA
Teori: ☐ ☐ ☐
Forsøg: ☐ ☐ ☐
EDB: ☐ ☐ ☐
Skalaeffekter relateret til bølgeopskyl

Formål: Hvis en brydende bølge observeres i naturen vil man se den har et meget mere hvidt udseende end hvad der kan observeres når den samme situation reproduceres i laboratoriet. En sammenligning af luftindholdet og bobelstørrelsen viser at der er ret store forskelle mellem natur og modellen. Det skyldes hovedsageligt at vandets overfladespænding ikke er skaleret i Froudes modellenv. Dette giver anledning til boblerne bliver relativt for store i modellen, hvormed de også hurtigere dissiperer end de mange flere mindre bobler i naturen. En anden vigtig grund til forskellen i luftindholdet er at der i modellen oftest benyttes ferskvand mens vandet i naturen er salt.

Indhold: Effekten af følgende fænomener ønskes belyst gennem arbejdet:
- Variation af saltindhold,
- Variation af luftindhold og bobelstørrelse,
- Variation af viskositet og densitet.

Vejleder: TLA,HFB,LA Teori: ☒☐☐ Forsøg: ☒☒☒ EDB: ☒☐☐
Korrekt bestemmelse af bølgekræfter på offshore-fundamenter ved modelforsøg

Formål: Når bølgebelastning på et fundament skal klarlægges, suppleres beregningerne som oftest med modelforsøg. Den eksperimentelle bestemmelse af bølgelasten kan foregå på følgende to måder:

- Bestemmelse af trykvariationen på overfladen af fundamentet ved hjælp af trykceller og numerisk integration af denne.
- Ophænge konstruktionen i en krafttransducer således modellen hænger et lille stykke over bunden. Dermed kan moment og vandret kraft på modellen bestemmes.

Den sidste metode er langt billigst og lettest at udføre i praksis, men giver anledning til nogle modeleffekter. Disse modeleffekter ønskes klarlagt i dette projekt hvor de to målemetoder benyttes samtidigt.

Ligeledes suppleres med nogle beregninger af hvorledes de bølgeinducerede tryk penetrerer ind under fundamentet. Dette vil selvfølgelig afhænge af fundamentets udseende og jordens egenskaber. Indflydelsen af disse tryk på fundamentets bæreevne ønskes ligeledes undersøgt.

Indhold: Følgende punkter kan indgå i arbejdet:

- Udførelse af modelforsøg med varierende frihøjde over bunden.
- Indflydelse af tryk på undersiden på målingerne.
- Numerisk bestemmelse af trykkene på bunden når fundamentet står på en mere eller mindre permeable jord.
- Indflydelse på fundamentets bæreevne

Vejleder: TLA, LA Teori: ☒☒☐ Forsøg: ☒☒☒ EDB: ☒☒□
Vibrationer fra trafik på “smukke” gader

Formål: Gennem de senere år har man i forbindelse med byforskønnelsesprojekter retableret brostensbelægningen på adskillige gader i de indre bydele. Som eksempel kan nævnes Boulevarden og dele af Østerå i Aalborg. Hertil kommer, at man med udgangspunkt i ønsket om mindre trafikhastigheder har etableret chikaner og fartbump. Dette er imidlertid sket på bekostning af et forøget vibrationsniveau. Den ujævne vejoverflade medfører nemlig, at rystelser genereres under bilernes hjul og føres gennem jorden til det omkringliggende miljø til gavn for mennesker og muligvis til skade for bygninger. Spørgsmålet er imidlertid, om man kan udforme vejbelægningen, så den på samme tid tilgodeser såvel de “arkitektoniske” som de komfort- og sikkerhedsmæssige krav.

Indhold: Projektet består i en analyse af vibrationer fra køretøjer på forskellige vejbelægninger og efterfølgende design af vejbanen og underlaget. Følgende punkter kan indgå i arbejdet:

- numerisk modellering af vibrationsudbredelse gennem vej og underlag,
- verifikation af beregningsmodel vha. dynamiske målinger,
- design af vejoverflade med henblik på formindskelse af vibrationer,
- udformning af vejunderlag til forhindring af vibrationsudbredelse.

Arbejdet kan evt. ske i samarbejde med en virksomhed, som producerer materialer til vejbelægning fyldmaterialer til vejbygning.

Vejleder: LA
Teori: ☒☒☐
Forsøg: ☒☐☐
EDB: ☒☐☐
Egenskaber af sand omkring pæle udsat for scour

Løsningen uden erosionsbeskyttelse er derfor interessant da det typisk er udmattelse der er dimensionsgivende for pælen.

Indhold: Projektet er rettet mod studerende, som ønsker at arbejde med forsøg og materialemodellering. Følgende punkter kan indgå i arbejdet:
- Studie af teori for scour,
- Udformning af model,
- Opstilling af designgrundlag (bølgertilstand, strøm, initial tilstand af jord),
- Udførelse af modelforsøg,
- Teoretisk analyse af jords opførsel under sedimentation,
- CFD/FEM modellering af jord og vand.

Det kan evt. komme på tale at lave observationer på eksisterende konstruktioner.

Vejleder: LA, TLA
Teori: ☑️ ☐️ Forsøg: ☐️ ☑️ EDB: ☐️ ☑️
Den virtuelle bølgerende

Formål: Ved design af offshore-installationer, kystsikrings- og bølgeenergianlæg samt havnekonstruktioner anvendes ofte modelforsøg foretaget i en bølgerende. Modelforsøg er imidlertid tidskrævende og dyre at udføre – særligt hvis der skal laves parameterstudier, hvor forskellige/gentagne opbygninger af modellen kræves. Derfor er det yderst relevant at have en numerisk model til beregning af bølgepåvirkningen på konstruktioner. Problemet er, at eksisterende modeller baseret på traditionelle Computational Fluid Dynamics beregningsskemaer ikke kan håndtere et frit vandspejl på tilfredsstillende vis. Således opstår numerisk diffusion i modellen. Dette problem kan med al sandsynlighed omgås ved i stedet at benytte den såkaldte Particle in Cell (PiC) metode, hvor man holder styr på materialets (vandets) nøjagtige position, og ikke blot refererer til kontrolvolumener.

Indhold: Projektets hovedbestanddel er programmering af den virtuelle bølgerende baseret på Particle in Cell metoden. Følgende punkter kan indgå i arbejdet:

➢ formulering af numerisk model baseret på PiC metoden,
➢ programmering af den virtuelle bølgerende,
➢ implementering af en turbulensmodel i PiC-modellen,
➢ sammenligning af PiC-model med en/flere eksisterende modeller,
➢ sammenligning af PiC-model med forsøgsresultater for udvalgte konstruktioner,
➢ vurdering af PiC-modellens anvendelse mht. bølgekørsel og overskyl.

Der vil i forbindelse med projektet være mulighed for at køre parallelberegnning på et computer cluster.

Vejleder: LA, MB

Teori: ☐☐☐ Forsøg: ☐☐☐ EDB: ☐☐☐
Egenskaber af anisotropisk jord

Formål: Dimensionering af geotekniske konstruktioner foretages i stor udstrekning i dag ved hjælp Finite Element Models. De i dag benyttede konstitutive modeller for jord antager generelt, at det modellerede materiale er isotropisk. Naturlig aflejring af jord er derimod sjældent isotropisk, men ofte krydsanisotropisk (éns egenskaber i de to vandrette retninger, som er forskellig fra egenskaberne på tværs af laggrænserne). Det er ønskeligt at undersøge, hvor stor en fejl, der begås, når geotekniske konstruktioner dimensioneres under antagelse af isotropiske egenskaber. I laboratoriet er det muligt at undersøge anisotropisk jords egenskaber i det kubiske triaxial apparat. Når de anisotropiske egenskaber er undersøgt, kan disse implementeres i en konstitutiv model med henblik på at undersøge ovennævnte fejl.

Indhold: Projektets hovedbestanddel er en kombination af laboratorieforsøg samt formulering af en anisotropisk konstitutiv model og implementering af denne i et FEM-program. Følgende punkter kan indgå i arbejdet, enten helt eller delvist:

- undersøgelse af krydsanisotropisk jords egenskaber, evt. ved forsøg,
- formulering/revidering af en konstitutiv model for anisotropisk jord,
- implementering af den konstitutive model, fx i FEM-programmet ABAQUS,
- undersøgelse af fundamenters bæreevne under antagelse om isotropisk jord kontra anisotropisk jord.

Eksisterende forsøgsresultater for sand foreligger, hvis det ikke ønskes at udføre laboratorieforsøg i forbindelse med nærværende projekt.

Vejleder: LA, AA

Teori: ☒☒☐ Forsøg: ☒☐☐ EDB: ☒☐☐
Store horisontalt påvirkede pæle

Formål: Idag anvendes pæle med store diametre (D=5-8m) ofte i forbindelse med fundering af for eksempel havvindmøller. Pæle er udsat for store horisontale kræfter i form af for eksempel vind og bølger. Design af horisontaltbelastede pæle baseres ofte på en Winkler model hvor jord/pæl-responset er repræsenteret ved ikke-lineære fjedre og det kan beskrives ved såkaldte p-y kurver. Metoden baseret på p-y kurver ligger til grund for anbefalingerne beskrevet i API-standarden, som anvendes over hele verden ved fundering af konstruktioner på vand. API-standarden er udviklet i forbindelse med olieindvindingsanlæg af the American Petroleum Institute. Anbefalingerne i API-standarden vedrørende horisontaltbelastede pæle i sand er baseret på meget få tests og er primært gældende for pæle med diametre mindre end 2,5m. Det ser ud til, at API-standarden giver anledning til et ikke-konservativt design, når denne metode anvendes på pæle med store diametre (D=5-8m). Skalering er altså en nøgle faktor, der ikke er nærmere belyst. Ydermere er interaktionen mellem jord og pæl ikke velbeskrevet og er den interaktionsmodel, der normalt dimensioneres ud fra korrekt? Projektet går altså ud på at undersøge/belyse designgrundlaget for store horisontaltbelastede pæle.

Indhold: Følgende punkter kan indgå i arbejdet, enten helt eller delvist:

- Numerisk modellering af jord/pæl interaktionen med for eksempel FLAC.
- Effekten af diameter, længde, stivheder af pæl og jord på pæleresponset.
- Kalibrering af p-y kurver for både statisk og cyklisk belastning.
- Opstilling af pæl/jord model baseret på et Pasternak fundament og forskydnings-fleksibilitet af pæl.
- Brud i jorden omkring horisontaltbelastede pæle.
- Litteraturestudie.

Vejleder: AA, LA, LBI

Teori: ☑ ☑ ☑ **Forsøg:** ☑ ☑ ☑ **EDB:** ☑ ☑ ☑
Stabilitet af geotekniske konstruktioner

Jordtryk på konstruktioner kan i dag beregnes ved hjælp af konventionelle metoder og numeriske værktojer såsom PLAXIS og ABAQUS. Det er ønskeligt at undersøge, hvor stor en forskel der er i jordtryk, de to metoder giver anledning til. Der kan eventuelt tages udgangspunkt i en konstruktion, hvorpå der måles jordtryk. Desuden ændres jordtrykkene sandsynligvis med tiden. Det er interessant at vide, hvor stor denne ændring er, og om beregningsmodellerne tager højde for det. For at dimensionere jordtryk påvirkede konstruktioner indføres der sikkerhed i form af regningsmæssige styrkeparametre; men er dette optimalt?

Indhold: Projektet omhandler problemstillinger med hensyn til stabilitet af geotekniske konstruktioner og skrænter. Hovedbestanddelen i projektet går på at sammenligne konventionelle metoders anvendelighed i forhold til numeriske. Beregninger kan eventuelt følges op med mark- og laboratorieforsøg. Følgende punkter kan indgå i arbejdet, enten helt eller delvist:

- vandtryks indflydelse på total stabilitet,
- undersøgelse af fordele ved “soil improvement” mht. stabilitet,
- teoretisk bestemmelse af jordtryk, konventionelle og numeriske beregninger,
- eksperimentel undersøgelse af jordtryk.

Vejleder: CSS, AA, LA

Teori: ☒☒□ Forsøg: ☒□□ EDB: ☒□□
Bøttefundamentets styrke- og deformationsegenskaber ved cyklisk belastning

Formål: De kræfter der virker på vindmøller, transient og cykliske i natur, giver anledning til elastiske oscillationer og muligvis til liquefaction af sandet inde i bøtten. Sådan sand liquefaction vil sandsynligvis føre til fuldstændige bæreevnesvigt, hvorfor liquefaction skal undgås.

Indhold: Forholdene, der kan føre til sådanne tilstande, skal undersøges og fastlægges ved eksperimenter. En forsøgstank indeholdende faciliteter til udlejning af jorden samt mulighed for statisk og transient og cyklisk belastning er udviklet i dette forår ved laboratoriet for fundering, Aalborg Universitet, se figuren. Tanken ønskes gennem dette projekt at blive gjort fuld operationel. Tankens belastningssystem er opbygget således, at det kan benyttes til cykliske udmattelsesforsøg. Herved kan risikoen for liquefaction undersøges:

- Resultaterne af disse forsøg sammenholdes med resultaterne fra de statiske forsøg. Herved kan det evalueres, om den varierende belastning har indflydelse på fundamentets bæreevne, stivhed samt plastiske deformationer.

- Den elastiske opførsel under cyklisk belastning er vigtig for interaktionen med tårnet, og dette skal kortlægges ved hjælp af eksperimenter, analyse og beregning på baggrund af elasticitetsteori udfra de udførte forsøg.noget til sidst.

Vejleder: LBI

Teori: ☑️ ☑️ ☑️ **Forsøg:** ☑️ ☑️ ☑️ **EDB:** ☑️ ☑️ ☑️
Bøttefundamentets styrke- og deformationsegenskaber ved installation i ler

Formål: 3-D numerisk simulering af forskellige typer af bøttefundamenter installeret i ler foretages. Deres anvendelighed til offshore vindmøller undersøges med henblik på forståelse af deres opførsel under normale og ekstreme laster når den funderes i ler.

Indhold: Resultater fra en række modelforsøg (fra pågående afgangsprojekt) skal simuleres numerisk og sammenlignes med resultater fra analytiske modeller.

- De simulerede bøttefundamentforsøg er de ovenfor beskrevne modelforsøg og de forsøg. Disse inkluderer udrænede forsøg, i hvilke bøtterne er påvirket af moment, horisontale og vertikale kræfter. De numeriske analyser er i stand til at simulere ændringen i størrelse og form af brudfladen i H-M/D planet, svarende til de eksperimentelle observationer.

Vejleder: LBI
Teori: ☒ ☐ ☒
Forsøg: ☒ ☐ ☒
EDB: ☒ ☐ ☒
Design af erosionsbeskyttelse til offshore-vindmøller

Den første metode er en traditionel beregning der forløber som følger:

1. Estimering af maksimal bundforskydningspænding fra bølger og strøm i uforstyrret strømning.
2. Bestemmelse af bundforskydningspænding i forstyrret strømning ved anvendelse af forstærkningsfaktor pga. fundamentet.
3. Bestemmelse af stenstørrelse f.eks. ved Shields diagram

En sådan beregning fører typisk til dæksten med en diameter omkring 1 meter. Men beregningen er meget usikker. Den største usikkerhed kan forventes at ligge i pkt. 3, da Shields diagram er udviklet fra fors øg med ren strøm og sandkorn. Anvendelse af dette diagram for store sten, hvor den drivende kraft er combineret bølge og strøm, er meget tvivlsom.

Den anden metode til fastlæggelse af stenstørrelsen er udførelse af modelforsøg i lille skala (typisk 1:50). Aalborg Universitet har i flere tilfælde udført sådanne modelforsøg i forbindelse med design af en række havvindmølle parker. Sådanne modelforsøg fører typisk til sten med en diameter 0.2 til 0.6 meter. Usikkerheden i forsøgene ligger i at der kan være ret store skalaeffekter.

Der er således en stor forskel på de stenstørrelser, der findes ved de to metoder. I projektet ønskes ved forsøg klarlagt, hvilke problemer der kan være i den traditionelle beregningsgang primært med henblik på pkt. 3, således en bedre beregningsmetode findes. Hvis gabet mellem de 2 metoder klarlægges, kan behovet for udførelse af modelforsøg i fremtiden mindskes kraftigt.
Indhold: Følgende punkter kan indgå i arbejdet, enten helt eller delvist:

- Litteraturstudie,
- Udførelse af forsøg til fastlæggelse af kritisk bundforskydningsspænding i strøm ved forskellige stenstørrelser,
- Udførelse af forsøg til fastlæggelse af kritisk bundforskydningsspænding i bølger ved forskellige stenstørrelser,
- Udførelse af forsøg til fastlæggelse af kritisk bundforskydningsspænding i strøm + regelmæssige bølger,
- Udførelse af forsøg til fastlæggelse af kritisk bundforskydningsspænding i strøm + uregelmæssige bølger,
- Udførelse af forsøg med cylinder konstruktioner til undersøgelse af pkt. 2. Indflydelsen af beskyttelsens udstrækning bør undersøges,
- Forslag til ny design procedure.

Vejleder: TLA, MB

Teori: 🟣🟢🟠 Forsøg: 🟣🟢🟢 EDB: 🟢🟢🟢
Scour-beskyttelse omkring bøttefundament

Formål: Placeres bøttefundamentet direkte på bunden udsættes det for scour som følge af de store lokale strømningshastigheder, som optræder umiddelbart omkring bøtten. Scour beskyttelsen udgør 20 - 25 % af den total pris for en installeret bøtte. Anvendes de designregler der gælder i dag er scour beskyttelsen umiddelbart en del større end den der kræves for en pæl, se øverste figur. For at gør bøttefundamentet konkurrencedygtig er der udviklet en metode til at undersænke bøtten ned i havbunden, se nederste figur. Ved at undersænke bøtten 2 - 3 meter ned i havbunden postuleres det, at bøtten med dens lodrette skots besidder den egenskab, at udviklingen af scour hullet omkring tornet stopper, før det når ud til skørtekant, se øverste figur. Scour hullet påvirker derved ikke stabiliteten af fundamentet. Denne påstand ønskes undersøgt ved dette projekt. Projektet kan opdeles i to forløb. Projektet er derfor velegnet som et 9. semester projekt (3-6 studerende) eller som lang afgang (2-3 studerende).

![Figur 1: Scour-beskyttelse omkring bøttefundament](image1)

Indhold: Følgende punkter kan indgå i arbejdet, enten helt eller delvist:

Vejleder: LBI, LA, MB
Teori: ☐ ☐ ☐
Forsøg: ☐ ☐ ☐
EDB: ☐ ☐ ☐