Meteorological effects on the incidence of pneumococcal bacteremia in Denmark

Tvedebrink, Torben; Lundbye-Christensen, Søren; Thomsen, Reimar W.; Dethlefsen, Claus; Schønheyder, Henrik

Publication date: 2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Meteorological effects on the incidence of pneumococcal bacteremia in Denmark

Torben Tvedebrinka, Søren Lundby-Christensena,b, Reimar W. Thomsenc, Claus Dethlefsend, Henrik C. Schönheydere

aDepartment of Mathematical Sciences, Aalborg University; bDepartment of Health Science and Technology, Aalborg University; cDepartment of Clinical Epidemiology, Aalborg Hospital, Aarhus University Hospital; dCenter for Cardiovascular Research, Aalborg Hospital, Aarhus University Hospital; eDepartment of Clinical Microbiology, Aalborg Hospital, Aarhus University Hospital.

Introduction

The seasonal nature of invasive pneumococcal disease with peak incidences during winter months is well recognized (Dowell 2003, Talbot 2005, Watson 2006). However few detailed studies of the temporal relationship between actual climatic changes and subsequent pneumococcal disease are available. We perform an 8-year longitudinal population-based ecological study in a Danish county to examine whether foregoing changes in meteorological parameters, including temperature, relative humidity, precipitation, and wind velocity, predicted variations in pneumococcal bacteremia (PB) incidence.

Methods

We included cases of PB that occurred from January 1995 through December 2002 in North Jutland County, Denmark, with a population of 492,845 individuals on average during the period of study. Patients with PB were defined as individuals with a clinical disease episode with Streptococcus pneumoniae detected by blood culture.

Meteorological data were available in terms of daily summaries from a weather station corresponding to the area under study. Daily mean values were calculated for temperature (minimum, mean and maximum), relative humidity, precipitation and wind velocity.

We fitted a harmonic sinusoidal regression model to estimate the exact phase difference in days between changes in each of the meteorological variables and PB incidence. The model was given by $A \cos(2(\tau - \phi)/365.25) + B$ where ϕ is the phase that indicates the location of the seasonal peak. Since the PB incidence counts were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assumed Poisson distributed we took a square root transformation. The differences in phase were assume...

Table 1: Phase differences for pneumonia and the meteorological variables in days with 95%-CI in brackets.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Phase difference in days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum temperature</td>
<td>-19 (-22 ; -17)</td>
</tr>
<tr>
<td>Minimum temperature</td>
<td>-13 (-15 ; -11)</td>
</tr>
<tr>
<td>Temperature</td>
<td>-16 (-18 ; -14)</td>
</tr>
<tr>
<td>Wind velocity</td>
<td>3 (1 ; 5)</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>-59 (-65 ; -52)</td>
</tr>
<tr>
<td>Precipitation</td>
<td>28 (2 ; 55)</td>
</tr>
</tbody>
</table>

Discussion

Our analyses confirmed a distinctive seasonal variation in the incidence of PB in Denmark with similar summer troughs and winter peaks as have been reported from several states in the US and from a temperate region in Australia (Dowell, Watson, Talbot). Our findings are in line with one previous study from Australia that examined the relationship between PB and similar specific climatic parameters as in our study, finding a strong inverse relationship between weekly mean maximum and minimum temperature and PB activity in the population, whereas other examined climatic parameters were unrelated to PB (Watson).

We speculate, that the approximately 2 weeks between temperature drops and PB peaks may represent the time lag from increased indoor crowding due to cold weather, increased transmission of respiratory viruses together with exchange of new pneumococcal serotypes among children, transmission to adult contacts of both, increased occurrence of viral upper respiratory tract infection, followed by pneumococcal pneumonia and admission with PB.

Conclusion

We found that changes in temperature closely predicted pneumococcal bacteremia incidence peaks, independently of seasonal patterns.