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ESTIMATION OF FREQUENCY RESPONSE
FUNCTIONS BY RANDOM DECREMENT

J.C. Asmussen & FL Brincker

Department of Building Technology and Structural Engineering
Aalborg University, Sohngaardsholmsvej 57, 9000 Aalborg, Denmark.

Abstract A &had  for estimating frequency response
functions by the Random Decrement technique is investi-
gated in this paper. The method is based on the auto and
cross Random Decrement functions of the input process and
the output process of a linear system. The Fourier transfor-
mation of these functions is used to calculate the frequency
response functions. The Random Decrement functions are
obtained by averaging time segments of the processes under
given initial conditions. The method will reduce the leakage
problem, because of the natural decay of the Random Decre-
ment functions. Also, the influence of noise will be reduced
since the FFT is applied to the signatures, where the noise
is reduced by averaging. Finally, the proposed technique will
typically be faster than the traditional method, where the
FFT is applied to every data segment in stead of applying
the FFT just one time on the final Random Decrement func-
tion. The method is demonstrated by a simulation study.

Nomenclature

L
DYY
DXY
h,h
H,H
L

Value of time series.
Trig condition on Y.
Auto RDD function.
Crass RDD function.
Impulse response function/matrix.
Frequency response function/matrix.
RDD function length and length of input time
segments to FFT.
Number of points in FRF.
Number of trig points.
Discrete time point.
Stochastic processes.
Realizations of Y, X
Time derivative of Y ,X
Value of time-derivative of timeseries.
Fourier transformation of D.
Standard deviation of Y
RDD function length

1 Introduction

This paper deals with the estimation of frequency response
functions (FRF) of linear systems using the Random Decre-
ment (RDD) technique. It is known, that the Fourier trans-
formation of the auto- and cross-correlation function of the

input and output processes of a linear system CM be used
to estimate the FRF of the system, see Bendat  &  Piersol
[l].  Vandiver  et al. [2]  proved that the RDD technique ap
plied with the level crossing trig condition estimates the auto
correlation function of a time series under the assumption of
a zero  mean Gaussian process. This result whs generalized
by Brincker et al. [3],  [4],  who proved under the same  a.-
sumption,  that the RDD technique applied with a general
formulated trig condition estimates a weighted sum of the
auto- and cross-correlation functions of two  time series and
their time derivative. This could e.g. be the load process and
the response process of a linear system.

In Brincker [3]  the idea of using the Fourier transformation
of the RDD functions as B basis for estimating FRF’s is pre-
sented. This  new method is the topic of this paper. The
method is demonstrated by a simulation study of a linear 3
degree of freedom system loaded by pink noise at the first
degree of freedom. The precision of the approach is com-
pared with results obtained from traditional modal analysis
based on FFT of the simulated time series. Even though the
speed of this method is one  of the advantages, compared to
traditional modal analysis, this topic is not considered in this
paper. Only accuracy is considered.

The influence of the number of points in the FRF estimate
and the number of points in the time series is investigated.
A quality measure is used to compare the results from RDD
estimation combined with FFT (RDD-FFT) with a tradi-
tional FFT based technique (FFT). The simulation study
shows that RDD-FFT is more  reliable than FFT. The accu-
racy of the FFT estimate of the FRF depends strongly on
the number of points in each transformation. Furthermore
the RDD-FFT method is less sensitive to noise.

2 Random Decrement Technique

The RDD technique is a method for estimating auto-  and
cross-correlation functions of Gaussian processes, Vandiver
et al. [2],  Brincker et al. [3],  [4].  The auto and cross  RDD
functions of the processes X and Y are defined as:

DYY(~)  = E[Y(t+ r)lCv(t)l (1)

Dxu(r) = qxct + ~WY,,,l (2)
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i.e. RDD functions are defined as the mean value of a process
Y given some trig conditions CqI) or Cx(t).  For a time
series the estimates of the auto and cross RDD functions are
obtained as the empirical mean.

bw(r)  = ; 5 Y(‘+ k)lCY(t,) (3)
I=1

Where N is the number of paints fulfilling the trig condition.
Alternatively, the RDD functions, Dxx  and Dux could be
estimated. Any trig condition can be constructed from the
basic trig condition given by the complete initial conditions.

f&@,) =  [Y(k)  =  a  ” Y(G)  =  w] (5)

Assuming X and Y are stationary zero-mean Gaussian pro-
cesses, the trig condition eq.  (5) applied in eq.  (1) and eq.
(2) will  yield, Brincker et al. [3],  [4].

RXY KY,D&r) = T.a  - ---c
,JY L7; (7)

Where by  and gp  denotes  the standard deviation of Y and
the time derivative Y of Y, R and R’ denotes the auto- and
cross-covariance  and their time derivatives.

From eq. (6) and eq.  (7) several trig conditions can be formu-
lated, which only picks out either the correlation functions OI
the derivative of the correlation functions, see Brincker et al.
[4].  However, in this paper only two different trig conditions
are considered: The local extremum trig condition eq.  (6)
and trigging at zero crossings with positive slope, eq. (9).

c+) = [Y(i)  > 0” Y(t)  = O] (8)

Cy(*)  = [Y(t)  = 0 “F(t)  > O] (9)

Given the previous mentioned assumptions about Y and X,
the local extremum trig condition reduces eq.  (6) and eq.  (7)
to:

RYYDYY(T)=~.~ RXY

CY
DXY  (r)  = 7 a (lOIY

Using zero crossing with positive slope reduces eq. (6) and
eq.  (7) to:

R&YDuv(r)=  o?'~ R’x  YDxu(r)=  rr2 .u (11)
Y x

These trig conditions have the advantage of picking out only
the auto/cross-covariance  or  the derivative of the auto/cross-
covariance.

RDD functions are “born” unbiased, some times however,
implementation of the trig condition might change it slightly,

and thus, some changes of the functions might take place that
in some cases might appear bs bias. These problems are not
present in this investigation, since the presented technique
will work unbiased for any trig condition. The only bias in-
troduced is the leakage bias introduced by the FFT. Because
of the decay of the RDD function, the influence of this bias
will  be sma.Uer  than for the traditional FFT.

3 Estimation of FRF

Consider a linear  system with n degrees of freedom. The
response, Y, of the system to some load X is given by the
convolution integral, if the initial conditions are zero or  neg-
ligible

Y(t)  =
J’

h(t  - rl)X(v)h (12)
-m

Where h is the impulse response matrix. Assuming that any
random force has been applied to the i’th degree of freedom
only, the response at the j’th degree of freedom is:

K(f)  =
SC

h,(f  - 7)Xi(?)h (13)
-cc

To calculate the conditional mean value,  see eq.  (l), the
time variabels  t and q are substituted. Eq. (13) can  then be
rewritten in the following form:

7
Yj(t+r)  =

I
h.,(r - OXi(E  + t)dt (14)

-m

Assuming that the impulse response matrix is time invari-
ant, the conditional mean value, eq.  (l), of eq.  (14) can be
calculated as:

aY,(t + 4lGd =

J_‘,  h(r  - wLw + E)lGy&~
(15)

or

I

v
Du,v.(t+r)  = h(r-C)Dx,v,(l+ r)dE (16)-m

The Fourier transformation, Z(w), of the RDD function D(r)
is defined as:

Z(w) = & D(+~-~‘dr (17)

Applying this definition to the time domain formulation eq.
(16) together with the convolution theorem yields:

ZY,U.(W)  = H,(w)Zx,Y,(w) (18)

If the trig condition is applied on the load process of the
system, an alternative formulation is obtained.

Z,x,(w)  = Hs,(w)Zx,x,(w) (19)

Eq. (18) and eq. (19) show  that the Fourier transforma-
tion of the RDD functions can be used for estimation of the
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frequency response matrix of a linear system. The method
is very alike traditional modal analysis, were the frequency
response matrix is estimated from the Fourier transforma-
tion of the measured load X and the measured response Y.
The method has several advantages compared to traditional
modal  analysis. Since the RDD technique averages out the
random errors  before the Fourier transformation, the tech-
nique is ecpected  to be less sensitive to noise. Furthermore
if the length of the RDD function is chosen long enough, the
decay will reduce leakage. Dependent of the length of the
RDD functions the number of trig points and the length of
the measured time series, this method migth be more  or less
faster than traditional modal analysis.

4 Simulation of 3DOF System

The purpose of this simulation study is to illustrate the appli-
cation of the method for estimating FRF’s of a multi degree
of freedom system. The system is linear with the following
mass  and stiffness matrices.

The system is Raleigh damped with the damping matrix:

C = 0.4. M + 0.0004. K

The modal parameters from this system are:

(21)

1

1.000 1.000 1.000
9= 1.175 0.081 -1.756

1.165 -0.940 0.913 1 (23)

The system was  loaded by a pink noise process at the
first mass. The pink noise process was simulated by an
ARMA(2,l).model,  Pandit  [6].  The response of the system to
this load is simulated using standard routines from the MAT-
LAB CONTROL TOOLBOX, [7].  The sampling frequency
wa8  chosen to 15 Hz and 30000 points are simulated. All
investigations in  this paper were  performed using the same
time series, allthough  mostly only the first part of the time
series was used. Figure  1 shows the first part of the load
process and the corresponding response at the first mass.

Figure 1: First part of simulated load process and the re-
sponse  at the first mass.

Figure 2 shows the absolute value of the theoretical FRF
(HH) of the system and the load process

Figure 2: Theoretical absolute value of FRF, HII,  and the-
oretical absolute value of load applied to mass 1.

The purpose of the investigations is to compare the accuracy
of the RDD-FFT technique and the FFT. To have a n~ea.sure
for  the accuracy of the different methods compared to the
theoretical value of the FRF’s, the following error  function is
defined:

Where M is the number of points in the FRF’s, Hi  is the
i’th value of the theoretical FRF and I?; is  the i’th value of
the estimated FRF. The error  function is independent of the
number of points in the FRF’s. The influence of the length of
the time series and the length of the RDD functions  and the
length of the time segments of the time series used by FFT
in the estimation of the FRF’s will be investigated. In the
graphical presentation of the results L denotes the length of
the RDD functions, which always  is equal  to the length of the
time segments used as  input for FFT. The following relation
between L and the number of paints in the FRF’s exists:
L = 2 *M  + 1.  To illustrate the influence of L and the length
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of the time series the following quality meaaue  is defined and
used.

quality = --& (25)

Furthermore the influence of noise is investigated by adding
a white noise sequence to the time series. The noise level is
described by the signal to noise ratio defined as z. In
order to use alI information from the time series the RDD
functions are estimated using a two step method. First the
signatures are calculated as described in section 2, then the
sign of the time series is changed. A new function is c&u-
l&ted,  again according to section 2 and the average of these
two functions are used as the resulting functions. Using this
method all  information from the time series are extracted.

5 Local Extremum Trigging

Figure 3 and figure 4 shows the auto and 3 cross RDD func-
tions estimated using the local extremum trig condition, eq.
(5). The number of points in the time series 14000  paints,
and L has a size of 450  points. The trig condition is applied
at the response of the first mass.

I L
-15 -10 - 5 0’ I

5 10 15iimc
[-cl

Figure 3: Auto, D,,,,,  and cross, D,,,,  RDD signatures.

x Id’

-15 -5 Tilne o[secl  5

Figure 4: Crass, D,,,,,  and cross, D,,,,  RDD signatures.

From these RDD  functions it is expected to have a leakage-
free estimate of the FRF’s, because the functions are decaying
to zero. Figure 5 and figure 6 shows the absolute value and
the phase of the theoretical FRF HI,, fill estimated using
RDD-FFT and pure FFT.

-4

.I

- mcory
.,,.,............... ROD+F,

I

Figure 6: Phase of frequency response function, HII

Figure 7 - figure 12 shows the quality calculuted ils  in eq.
(25) of RDD-FFT and FFT with the size of the time series
and L as variabels.  The size of the time series is varied from
2000  points to 14000  points with steps of 1000  points. L is
varied from 120 points to 512. No noise is added.

Figure 7: Quality of FRF HI1 estimated by RDD-FFT,
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Figure 8: Quality of FRF Hn estimated by FFT.

Figure 9: Quality of FRF Hz  estimated by RDD-FFT.

Figure 11: Quality of FRF Ha1  estimated by RDD-FFT

L

Figure 12: Quality of FRF Ha1  estimated by FFT

The above figures shows that, the estimations using RDD-
FFT and FFT are different. The RDD-FFT gives a smooth
curve, while the FFT results in CUIWS  with a lot of pitfalls.
This shows that the RDD-FFT is more  reliable. In average
the quality of the two methods is very alike. After adding
1% and 3% noise, respectively, the quality of the estimates
were  calculated again. The results of this analysis showed
the same tendency as  in the above figures, see Asmussen  et
al. [a].

Figure 13 figure 15  shows a comparison of RDD-FFT and
FFT using 5000  points from the timeseries. The figures shows
the quality with O%,  1% and 3% noise added.

Figure 10: Quality of FRF Hz1  estimated by FFT.
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d 150 200 250 300L 350 400 450 500
Figure 13: Quality of @II  estimated by RDD-FFT and FFT.
5 0 0 0 points used.

150 200 250 300L 350 100 450 500

Figure 14: Quality of H>s  estimated by RDD-FFT and FFT.
5000 points used.

d 150  200 250  JODL  350  400  450  500

Figure 15: Quality of ti~a estimated by RDD-FFT and FFT.
5000 points used.

Again  it appears, that RDD-FFT is more reliable than FFT.
The quality of the FFT’  d p d t.LS  e en en m an unpredictable way
on the number of paints, L, used in the transformations. The
average quality, however, is about equal. Furthermore FF’I
seems more sensitive to noise.

Figure 16 figure 18 shows a comparison of RDD-FFT and
FFT with 30000 points used from the timeseries. The figures
shows the quality with OS,,  1% and 3% noise added.

d 150 200 *50 300L 350 400 450 500
Figure 16: Quality of do, estimated by RDD-FFT and FFT.
3 0 0 0 0 points used.

d 150 200 250 300L 350 400 450 500
Figure 17: Quality of HZ estimated by RDD-FFT and FFT.
3 0 0 0 0 paints used.

d 150 200  250 JOOL  350  .oo  450  500
Figure 18: Quality of Hi,  estimated by RDD-FFT and FFT.
30000 points used.

A!so  for larger time series, it is seen that FFT fluctuates un-
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predictable. The influence of noise by the RDD-FFT method
has decreased by using 30000 points compared to the results
obtained using 5000 points. This indicates as  expected, that
more  trig points averages out noise.

6 Zero Crossing Trig Condition

The analysis made in section 5 is repeated with the zero  cros-
sing trig condition. The results of this analysis can be seen
in Asmussen et al. [a].  This analysis shows that the zero
crossing trig condition cannot  be compared with the results
from the local extremum trig condition. The quality is more
dependent on L than the local extremum trig condition. This
is illustrated in figure 19.

d 150  200 250 300L 350 400 450 300
Figure 19: Quality of 6,,  estimated by RDD-FFT and FFT.
1 4 0 0 0 points used.

The figure illustrates that quality cuwe of the RDD-FFT
method is not as  smooth as in figure  13 - figure 18.

7 Conclusion

A new method for performing modal analysis has been in-
vestigated. The method is based on FFT of RDD func-
tions. Two different trig conditions: Local extremum and
zero  crossing has been compared. The results shows that the
local extremum trig condition is the most reliable trig con-
dition. The comparison is based an variations of the length
of the analysed  time series and the length of the RDD func-
tions equal to the length of the time segments used by FFT.
The precision of the trig conditions is  investigated by defining
a quality measue. No attention is given to the estimation
time, but the RDD-FFT technique will be faster than pure
FFT in most applications.

The RDD-FFT method is also  compared with traditional
modal  analysis based on FFT. From the quality of the e-
stimations, it is concluded that RDD-FFT is more  reliable
than FFT. Even though the average quality of the two me-
thods is very alike. Furthermore it seems that RDD-FFT
is less sensitive to noise. Especially if a long time series is
used, RDD-FFT averages out noise. To have mope  informa-
tion about RDD-FFT several other trig conditions should be

investigated. The estimation time of both methods should
also be investigated as a function of the quality.
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