Blind quality estimation for corrupted source signals based on a-posteriori probabilities
Land, Ingmar Rüdiger; Thobaben, Ragnar

Published in:

Publication date:
2004

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Blind Quality Estimation for Corrupted Source Signals Based on A-Posteriori Probabilities

Ragnar Thobaben
Institute for Circuits and Systems Theory
University of Kiel, Germany
rat@tf.uni-kiel.de

Inngmar Land
Information and Coding Theory Lab
University of Kiel, Germany
il@tf.uni-kiel.de

Abstract — A novel approach is presented for assessing the quality of transmission systems, comprising quantized source signals and APP source decoders, via Monte-Carlo simulation. A-posteriori probabilities are exploited in order to obtain an unbiased estimate of both the symbol error probability and the expected distortion for the transmission system; knowledge of the transmitted source signal is not necessary. Compared to the conventional method this blind quality estimation has a smaller estimation variance.

Summary

The bit error rate estimation based on a-posteriori probabilities (APPs) was shown to be superior to the conventional one based on hard decisions [1]. In this paper this method is extended to symbol error rate (SER) and distortion estimation. Let us assume a simplified transmission model, where a real-valued source signal \(U \) is quantized to quantization indices \(I, i \in \mathbb{I} \), which are transmitted over a communication channel. Based on the channel observations \(Y \) the receiver generates APPs \(\Pr(I = i|y) \) [2], which are exploited to obtain estimates \(\hat{U} \) and \(\hat{I} \) of \(U \) and \(I \).

Typically quality evaluation via Monte-Carlo simulation is based on a comparison of the transmitted source data \((u, i)\) to their reconstructed versions \((\hat{u}, \hat{i})\) with respect to appropriate quality measures, such as the symbol error rate \(P_e \) or distortion \(D \). For a transmission of \(K \) source symbols, the corresponding quality samples can be used to compute the hard SER estimate \(\hat{z}^{(K)}_H \) and hard distortion estimate \(\hat{d}^{(K)}_H \) as

\[
\hat{z}^{(K)}_H := \frac{1}{K} \sum_{k=1}^{K} \hat{z}_{H,k} \quad \text{and} \quad \hat{d}^{(K)}_H := \frac{1}{K} \sum_{k=1}^{K} \hat{d}_{H,k}.
\]

Obviously, \(z^{(K)}_H \) and \(d^{(K)}_H \) rely on the knowledge of \(u \) and \(i \), from which it follows that the conventional Method H is not suitable for application in practical transmission systems. Thus, we consider now the case, where knowledge of \(u \) and \(i \) is not available. I.e., only the source statistics, the estimates \(\hat{u} \) and \(\hat{i} \), and the set of APPs \(p_{HA} = \{\Pr(I = i|y) | i \in \mathbb{I}\} \) may be used for quality estimation. These restrictions lead to a novel approach for the evaluation of \(P_e \) and \(D \), referred to as Method S in the following:

Method S: We define the soft SER sample as \(\hat{z}_S := \Pr(I \neq I | \hat{I} = i, P_A = p_A) \), which can be computed as \(\hat{z}_S = 1 - \Pr(I = i|y) \), and we define the soft distortion sample \(\hat{d}_S := \mathbb{E}[(U - \hat{U})^2|P_A = p_A] \), which is given by the a-posteriori expectation of the mean-squared error according to \(\hat{d}_S = \sum_{u \in \mathbb{U}} \mathbb{E}[(u - \hat{u})^2|I = i] \cdot \Pr(I = i|y) \) for a given \(\hat{u} \). Considering again the transmission of \(K \) source symbols, the soft SER estimate \(\hat{z}^{(K)}_S \) and the soft distortion estimate \(\hat{d}^{(K)}_S \) for Method S are given by

\[
\hat{z}^{(K)}_S := \frac{1}{K} \sum_{k=1}^{K} z_{S,k} \quad \text{and} \quad \hat{d}^{(K)}_S := \frac{1}{K} \sum_{k=1}^{K} d_{S,k}.
\]

For comparison of both methods we regard the hard and the soft SER and distortion samples as random variables \(Z_H, Z_S \) and \(D_H, D_S \). From their definitions and since the estimates are sample means, it follows that \(\mu_H = \mathbb{E}[Z_H] = \mathbb{E}[Z_S] = P_t \) and \(\mu_D = \mathbb{E}[D_H] = \mathbb{E}[D_S] = D \). Thus, both estimates are unbiased for both the SER and the distortion estimation.

An appropriate figure-6merit is the estimation variance. The variance of the hard SER sample \(Z_H \) can be written as

\[
\sigma^2_{Z_H} = E[Z_H^2] - \mu^2_h = E[Z_H] - \mu_H^2 = \mu(1 - \mu), \quad \mu = \mathbb{E}[Z_H] = \mathbb{E}[Z_S] = P_t
\]

and is upper bounded by \(\mu(1 - \mu) \), thus \(Z_S \leq Z_H \) and \(\mathbb{E}[Z_S^2] \leq \mathbb{E}[Z_H^2] \). Equality holds for the uninteresting cases \(Z_S = 0 \) and \(Z_S = 1 (\sigma^2_{Z_S} = 0) \). For all other cases we have a lower bound on the ratio of variances \(\sigma^2_{Z_H} / \sigma^2_{Z_S} \) and \(\sigma^2_{D_H} / \sigma^2_{D_S} \) of the SER samples:

\[
\frac{\sigma^2_{Z_H}}{\sigma^2_{Z_S}} > 1, \quad \frac{\sigma^2_{D_H}}{\sigma^2_{D_S}} > 1, \quad \text{(3)}
\]

resulting directly from (1) and (2).

A similar bound on the ratio of variances \(\sigma^2_{Z_H} \) and \(\sigma^2_{Z_S} \) of the distortion samples can be derived by applying Jensen’s inequality to the a-posteriori expectation of \(D_H \):

\[
E[D_H^2|P_A = p_A] \geq E[D_H|P_A = p_A]^2 = D_H^2, \quad \text{(4)}
\]

where the identity \(D_H = (u - \hat{u})^2 \) and the definition of the soft distortion sample \(D_S \) is exploited. It follows from (4) that \(E[D_H^2] \geq E[D_S^2] \), where again equality holds for \(\sigma^2_{D_S} = 0 \) (see above), and otherwise

\[
\frac{\sigma^2_{D_H}}{\sigma^2_{D_S}} > 1, \quad \text{(5)}
\]

which represents a lower bound on the ratio of variances \(\sigma^2_{D_H} \) and \(\sigma^2_{D_S} \) of the distortion samples.

The bounds in (3) and (5) prove that the hard SER sample as well as the hard distortion sample have always (except for \(P_t = 0 \)) a larger variance than the soft SER sample and the soft distortion sample, respectively. This reveals the superiority of the proposed Method S to the conventional Method H. In numerical results for Gauss-Markov sources the gain with respect to the estimation variance turned out to be even larger than predicted.

References
