## Aalborg Universitet

## AALBORG UNIVERSITY

## Fluid Dynamics

Brorsen, Michael

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Brorsen, M. (2008). Fluid Dynamics. Department of Civil Engineering, Aalborg University. DCE Lecture notes No. 21

## General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

## FLUID DYNAMICS

Michael Brorsen



Aalborg University
Department of Civil Engineering
Water and Soil

DCE Lecture Notes No. 21

## FLUID DYNAMICS

by

Michael Brorsen

March 2008
(c) Aalborg University

## Scientific Publications at the Department of Civil Engineering

Technical Reports are published for timely dissemination of research results and scientific work carried out at the Department of Civil Engineering (DCE) at Aalborg University. This medium allows publication of more detailed explanations and results than typically allowed in scientific journals.

Technical Memoranda are produced to enable the preliminary dissemination of scientific work by the personnel of the DCE where such release is deemed to be appropriate. Documents of this kind may be incomplete or temporary versions of papers - or part of continuing work. This should be kept in mind when references are given to publications of this kind.

Contract Reports are produced to report scientific work carried out under contract. Publications of this kind contain confidential matter and are reserved for the sponsors and the DCE. Therefore, Contract Reports are generally not available for public circulation.

Lecture Notes contain material produced by the lecturers at the DCE for educational purposes. This may be scientific notes, lecture books, example problems or manuals for laboratory work, or computer programs developed at the DCE.

Theses are monograms or collections of papers published to report the scientific work carried out at the DCE to obtain a degree as either PhD or Doctor of Technology. The thesis is publicly available after the defence of the degree.

Latest News is published to enable rapid communication of information about scientific work carried out at the DCE. This includes the status of research projects, developments in the laboratories, information about collaborative work and recent research results.

Published 2008 by
Aalborg University
Department of Civil Engineering
Sohngaardsholmsvej 57,
DK-9000 Aalborg, Denmark

Printed in Denmark at Aalborg University

ISSN 1901-7286 DCE Lecture Notes No. 21

## Preface

These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.

The notes join the Danish tradition of education laid down by the textbooks written by F. A. Engelund and J. Fredsøe, but also the transport of thermal energy is considered.

It is attempted to focus on the physics of flows and the corresponding mathematical description. Thus, many of the equations, which are solved numerically by the commercial Computational Fluid Dynamics (CFD) programs, are derived and explained. Hopefully this gives the reader a good understanding of the physics of a flow problem, making it possible to assess the quality of a numerical solution given by a CFD-program.

Aalborg, March 2008
Michael Brorsen

## Contents

1 Fluid Kinematics ..... 1
1.1 Basic Assumptions ..... 1
1.2 Compressibility of Fluids ..... 4
1.3 Basic Kinematic Concepts ..... 7
1.4 Rate of Change ..... 10
1.5 The Continuity Equation ..... 13
1.6 Vorticity ..... 16
1.7 Instantaneous Velocity Field ..... 21
1.7.1 Deformation Tensor ..... 23
1.7.2 The Spin Tensor ..... 25
1.7.3 Resulting Motion ..... 27
1.8 Velocity Potential ..... 31
1.9 Stream Function ..... 36
2 Fluid Dynamics ..... 40
2.1 State of Stress at a Point in a Fluid ..... 40
2.1.1 Stresses in a Resting Fluid ..... 45
2.1.2 Stresses in a Moving Fluid ..... 46
2.2 Equations of Motion ..... 48
2.3 Constitutive Equation for a Newtonian Fluid ..... 50
2.4 Navier-Stokes' Equation ..... 55
2.4.1 Vorticity Transport Equation ..... 61
2.5 Dissipation ..... 65
3 Ideal Fluids ..... 68
3.1 Basic assumptions ..... 68
3.2 Potential Flow ..... 72
3.2.1 Line Source and Line Sink ..... 72
3.2.2 Two-Dimensional Dipole Flow ..... 75
3.2.3 Flow past a Circular Cylinder ..... 78
3.2.4 Hydrodynamic Mass (Added Mass) ..... 82
4 Boundary Layers ..... 91
4.1 Flow Equations for Boundary Layers ..... 92
4.1.1 Boundary Layer on a Flat Plate in Uniform Flow ..... 93
4.2 The Momentum Equation ..... 96
4.3 Momentum Equation for Boundary Layers ..... 98
4.4 Separation ..... 103
5 Turbulent Flows ..... 106
5.1 Stability of Laminar Flow ..... 107
5.2 Description of Turbulent Flow ..... 111
5.3 Mixing Length Theory ..... 119
5.4 Velocity Profiles in Turbulent Flows ..... 123
5.4.1 Smooth Bottom ..... 123
5.4.2 Rough Bottom ..... 126
5.5 Considerations on energy in turbulent flow ..... 129
6 Turbulent Boundary Layers ..... 133
6.1 Flow Equations for Turbulent Boundary Layers ..... 134
6.2 Momentum Equation for Turbulent Boundary layers ..... 135
6.2.1 Turbulent Boundary Layer on a Smooth Plate in Uniform Flow ..... 138
6.3 Free Turbulence ..... 140
6.3.1 Turbulent two-dimensional, submerged jet ..... 141
7 Turbulence Models ..... 146
7.1 Mixing Length Model (Algebraic Model or Zero-Equation Model) ..... 147
7.2 The $k$ Model (One-Equation Model) ..... 149
7.3 Two-Equation Models ..... 155
7.3.1 The $k$ - $\epsilon$ Model ..... 155
7.3.2 The $k-\omega$ Model ..... 157
8 Transport Equation for Dissolved Substance ..... 159
8.1 Turbulent Flow ..... 161
9 Transport Equation for Thermal Energy ..... 164
9.1 Turbulent Flow ..... 167
10 Non-Homogeneous Fluids ..... 170
10.1 Boussinesq's approximation ..... 170
11 Transfer of Heat ..... 176
11.1 Forced Convection in Boundary Layers ..... 176
11.1.1 Boundary Layers on a Plate at Zero Pressure Gradient ..... 177
11.1.2 Boundary Layers on a Plate at Zero Pressure Gradient, Approximate Calculation ..... 180
11.2 Free Convection in Boundary Layers ..... 183
11.2.1 Boundary Layer at a vertical, heated plate ..... 183
Bibliography ..... 185
A The Gradient Theorem ..... 187
B On the Notation of Cartesian Tensors ..... 189

## Chapter 1

## Fluid Kinematics

### 1.1 Basic Assumptions

In order to find the motion of a fluid it is necessary to establish a mathematical model able to describe the conditions in the real fluid properly.

A fluid is composed of molecules moving around almost freely, and no global pattern is present in the placement of the molecules. Shear deformation of the molecules only demands weak forces, but a compression of the molecules creates very large repulsive forces.

If a resting fluid is exposed to shear forces, the molecules are always moving in such a way that the fluid takes a new shape without any shear at rest. Think e.g. of a glass of water being tilted. This is possible due to the lack of global structure of the molecules and the very small forces necessary to move the molecules in a way, which does not cause any compression.

The opposite contrast to fluids is solids, where a global structure of the molecules (a lattice) is present in most cases. Shear deformation is only possible by a deformation of this lattice, and this deformation of the lattice necessitates considerable forces, because all molecules have to be moved simultaneously. Consequently, a given shear force on a solid only creates a specific, limited deformation of the solid.

A water drop with a diameter of $\frac{1}{1000} \mathrm{~mm}$ contains approximately $N=1.8 \cdot 10^{10}$ molecules. In practice, it is therefore impossible to describe the positions of the individual molecules in ordinary flows.

Instead we choose to consider the fluid as a continuum, where the mass is distributed evenly in space. In this way we may use terms like

- density, $\rho$, defined as mass per unit volume. The density, therefore, depends on the number of molecules per unit volume and the mass of the individual molecule,
- stress, defined as force per unit area. Stresses are in reality the sum per unit area of of all forces (including the forces caused by exchange of momentum, see below) between the molecules on opposite sides of a section.
- fluid particle, defined as a fluid body with negligible dimensions. The size of the fluid particle has to be small compared to the size of the flow considered, but large compared to the size of the molecules. However, these demands are not difficult to fulfill, see e.g. the example with the water drop.

Consequently, the velocity of a fluid particle, $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right)$, is defined as the average of the velocities of the individual molecules

$$
\vec{v}=\frac{1}{N} \sum_{i=1}^{N}(\vec{v})_{i}
$$

A large computational reduction is obtained by assuming the fluid to be a continuum, but a price has to be paid due to the missing description of the motions of the individual molecules.

In a resting fluid the velocities of the molecules depend on the temperature of the fluid. Because the directions of the velocities are random in space the average value is zero, and the velocity of a fluid particle is zero.

In a moving fluid, the motions due to temperature cause an exchange of momentum over a section, and this is equivalent to both a normal force and a shear force on the section. This effect must be remembered, when considering the fluid a a continuum.

First it is seen that exchange of momentum is equivalent to a shear force. We consider two parallel speed walks moving at different velocities, see Figure 1.1.

For some reason the 'pedestrians' (quotation marks because they are too lazy to walk in the direction of the speedwalk) find it funny to swap positions. This results in an exchange of momentum between the speedwalks. All persons are assumed to have the same mass. Each time a person enters the fastest speedwalk, his velocity in the direction of the speedwalk is increased by $\Delta v_{1}$ and his momentum is increased proportionally. According to Newton's 2nd law, a force in


Figure 1.1: Dynamic equivalent descriptions of persons on two speedwalks.
the positive direction of the $x_{1}$-axis acts on him, and according to Newton's 3rd law he is acting on the speedwalk with a force of same size, but in the opposite direction.

Similarly, the reduction in momentum of the persons landing on the slowest speedwalk results in a force acting on the this speedwalk in the positive direction of the $x_{1}$-axis . The forces acting on the two speedwalks have the same size.

All in all, despite the swapping of persons, the mass of each speedwalk is constant, but the exchange of momentum is equivalent to two equal forces in opposite directions.

Consider the flow along a wall, where the fluid particles have increasing velocities in the the direction away from the wall, see Figure 1.2.


Figure 1.2: Dynamic equivalent descriptions of a fluid.

If the flow is described as a set of molecules (e.g. the speedwalk example), it is seen that the passage of molecules through section A-A (due the motions caused by temperature) results in an exchange of momentum equivalent to a shear force between bodies of water separated by the section. It is so, because the molecules crossing the section in downward direction on average have the largest horizontal velocity components.

If the fluid is not described as a set of molecules, it should be remembered to model the effect of the momentum exchange by introduction of the corresponding shear stresses in the continuum.

Because the shear stresses in a fluid are mainly caused by exchange of momentum, they are independent of the normal stresses. It is therefore unfortunate that shear forces in a fluid are sometimes called friction forces, because friction forces between solid bodies are proportional to the forces in the direction of the normal.

The size of the exchange of momentum depends on the temperature-dependent motions of the molecules, i.e. of the type of fluid, but also of the velocity gradient in the flow.

It is therefore natural that experiments have shown that the relation between shear stress and velocity gradient can be described by Newton's formula:

$$
\begin{equation*}
\tau_{21}=\mu \cdot \frac{\partial v_{1}}{\partial x_{2}} \tag{1.1}
\end{equation*}
$$

where $\tau_{21}$ is the shear stress component in the $x_{1}$-direction on a plane perpendicular to the $x_{2}$-axis, and $\mu\left[\mathrm{Nm}^{-2} \mathrm{~s}=\mathrm{Pa} \cdot \mathrm{s}\right]$ is called the dynamic viscosity. The name is adopted, as unit of force $(\mathrm{N})$ is part of the unit for this type of viscosity. Viscosity is a measure of the ability of the fluid to flow freely. Normally $\mu$ primarily depends on the type of fluid and the temperature.

Often, however, we apply the quantity kinematic viscosity defined as:

$$
\begin{equation*}
\nu=\frac{\mu}{\rho}\left[\mathrm{m}^{2} \mathrm{~s}^{-1}\right] \tag{1.2}
\end{equation*}
$$

This quantity is introduced, as the the ratio $\mu / \rho$ often appears in the equations describing flows.

In a resting fluid we have $\partial v_{1} / \partial x_{2}=0$ everywhere, and Newton's formula therefore correctly predicts the absence of shear stresses in a resting fluid.

Notice that in a flowing fluid we have $\tau_{12}=0$, where the tangent to the velocity profile is 'vertical', i.e. if $\partial v_{1} / \partial x_{2}=0$.

### 1.2 Compressibility of Fluids

A fluid volume, $X$, subject to a small increment in pressure $d p$ from $p$ to $p+\Delta p$, will experience a change in volume of $\Delta X$ from $X$ to $X+\Delta X$. Experiments have shown that the relation between $\Delta p$ and $\Delta X$ reads:

$$
\begin{equation*}
\Delta X=-\frac{X}{K} \cdot \Delta p \tag{1.3}
\end{equation*}
$$

where $K$ is a constant, called bulk modulus of the fluid [ $\mathrm{N} / \mathrm{m}^{2}$ ]. The minus-sign is present, because the volume is decreased, when the pressure is increased. For water e have $K_{\text {water }}=22 \cdot 10^{8} \mathrm{~N} / \mathrm{m}^{2}$.

For small values of $\Delta p$ equation (1.3) can be rewritten to:

$$
\begin{equation*}
d p=-K \cdot \frac{d X}{X} \tag{1.4}
\end{equation*}
$$

Integration on both sides of the equation yields:

$$
\int d p=-K \int \frac{d X}{X}
$$

or

$$
\begin{equation*}
p=-K \ln X+C \tag{1.5}
\end{equation*}
$$

The constant C is determined by adopting the initial conditions, where the pressure $p_{o}$ corresponds to the volume $X_{o}$. This gives:

$$
p_{o}=-K \ln X_{o}+C \quad \Rightarrow \quad C=p_{o}+K \ln X_{o}
$$

Substitution of $C$ into equation (1.5) yields:

$$
p-p_{o}=-K \ln \frac{X}{X_{o}}
$$

Finally this expression is rewritten to:

$$
\begin{equation*}
\frac{X}{X_{o}}=e^{-\frac{p-p_{o}}{K}} \tag{1.6}
\end{equation*}
$$

If the increase in pressure is $1 \mathrm{~atm}=1.013 \mathrm{bar}=1.013 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, the relative change in volume for water reads:

$$
\frac{X}{X_{o}}=e^{-\frac{1.013 \cdot 10^{5}}{22 \cdot 10^{8}}}=0.999954
$$

This compression is so small that we normally may consider water incompressible.

A bit surprisingly this is also valid if the fluid is air, but only in air flows, where the flow velocity is small compared to the speed of sound (pressure waves). This can be seen by adopting a few, simple considerations.

In the first run one has to take the compressibility into account. As the mass of a fluid volume, $m$, is constant, the corresponding change in density reads:

$$
\begin{equation*}
\Delta m=\Delta(\rho X)=X \Delta \rho+\rho \Delta X=0 \tag{1.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\Delta X}{X}=-\frac{\Delta \rho}{\rho} \tag{1.8}
\end{equation*}
$$

Substitution of this into equation (1.3) gives:

$$
\begin{equation*}
\Delta p=-K \cdot \frac{\Delta X}{X}=K \cdot \frac{\Delta \rho}{\rho} \tag{1.9}
\end{equation*}
$$

From experiments we know that in the flow direction the change of pressure and velocity from one point to the adjacent point approximately reads:

$$
\begin{equation*}
\Delta p=-\frac{1}{2} \rho \Delta\left(v^{2}\right) \tag{1.10}
\end{equation*}
$$

i.e. an increase in pressure corresponds to a decrease in velocity. The expression follows from Bernoulli's equation (see chapter 3).

As shown in most textbooks on basic fluid mechanics, the propagation velocity of a change in pressure (the speed of sound), $c$, in a fluid reads:

$$
\begin{equation*}
K=\rho c^{2} \tag{1.11}
\end{equation*}
$$

Substitution of the expressions for $\Delta p$ and $K$ into equation (1.9) gives:

$$
\begin{equation*}
\frac{\Delta \rho}{\rho}=\frac{\Delta p}{K}=\frac{-1 / 2 \rho \Delta\left(v^{2}\right)}{\rho c^{2}}=\frac{-1 / 2 \Delta\left(v^{2}\right)}{c^{2}} \tag{1.12}
\end{equation*}
$$

The order of magnitude of the relative change in density is overestimated if it is assumed that

$$
\left|\Delta\left(v^{2}\right)\right|=\left|\Delta\left(v^{2}\right)\right|_{\max }=v_{\max }^{2}-0^{2}=v_{\max }^{2}
$$

where $v_{\max }$ is the maximum velocity in the flow, and in practice one may adopt the expression

$$
\begin{equation*}
\frac{|\Delta \rho|}{\rho}<\frac{v_{\max }^{2}}{c^{2}} \tag{1.13}
\end{equation*}
$$

The speed of sound in air is $c_{a i r} \approx 330 \mathrm{~m} / \mathrm{s}$, and for flow velocities up to $30 \mathrm{~m} / \mathrm{s}$ the change in density is less than $1 \%$. In practice flowing air is assumed to be incompressible in civil engineering problems.

However, notice that some dynamic phenomena like underwater explosions and water hammers in pipes are impossible to describe at all, unless the compressibility is taken into account.

### 1.3 Basic Kinematic Concepts

Below we define some concepts, which are often adopted to describe the kinematics of a flow.

## - particle path

The path of a fluid particle is the curve in space along which the particle is moving. This curve can in principle be given as $x_{i}=x_{i}(t)$, where $t$ is the time. Marking a particle with some dye and taking a photo with long exposure can visualize the path. It is also a possibility to place small, coloured spheres with the same density as the fluid, and then record the motion with a video camera. A subsequent digitizing of the position of the sphere on each picture (i.e. $\Delta t$ sec apart) makes it possible to draw the path.

- velocity field

The velocity field of a domain is defined as the set of velocities (vectors) for the particles at a given time.
If the path of the particle, $x_{k}(t)$, is known, the velocity, $v_{i}$, for a specific particle reads:

$$
\begin{equation*}
v_{i}=\frac{d x_{i}}{d t}=v_{i}(t) \tag{1.14}
\end{equation*}
$$

The velocity field is therefore found by determining the position and velocity for all particles at a given time $t$.
However, in fluid dynamics it is normally easier to determine the velocity field first, i.e. determine the velocity of the particles, $v_{i}\left(x_{k}, t\right)$, when they are at given points $x_{k}$, and determine the paths later on by integration of equation (1.14).
A velocity field can be visualized by marking a set of particles and take a photo with short exposure. Every particle is shown on the photo as a small line segment proportional to the velocity at that position.

- two-dimensional flow (plane flow)

If the total velocity field can be found by displacing the velocity field of a single plane perpendicular to that plane, the flow is two-dimensional. If the flow takes place in e.g the $x_{1} x_{2}$-plane, we have $v_{3} \equiv 0$. Moreover $v_{1}=v_{1}\left(x_{1}, x_{2}, t\right)$ and $v_{2}=v_{2}\left(x_{1}, x_{2}, t\right)$.

- steady flow

If the velocity field is independent of time, i.e. $v_{i}=v_{i}\left(x_{k}\right)$, the flow is called steady. Notice that the velocity field only gives information about the velocity of particles, when the particle passes through the fixed point
$x_{k}$. If the same particle has different velocities at two points, acceleration must be present even though the velocity field is steady! See also Section 1.4 .

## - streamline

A streamline is defined as a line, which at all points has the local velocity vector as the tangent at a given time $t_{o}$. See Fig. 1.3. If $x_{i}$ denotes the


Figure 1.3: Definition of a streamline.
position vector to a point on the streamline, and $d x_{i}$ denotes a vector which is tangent to the streamline at $x_{i}$, the coincidence of this tangent and the velocity vector at $x_{k}$ may be expressed mathematically as $v_{i}=k \cdot d x_{i}$, where $k$ is a constant. This gives:

$$
\begin{equation*}
k=\frac{v_{1}}{d x_{1}}=\frac{v_{2}}{d x_{2}}=\frac{v_{3}}{d x_{3}} \tag{1.15}
\end{equation*}
$$

which in fact are two coupled differential equations. Sometimes these equations can be solved analytically, but a numerical solution is always possible, if we know the velocity field, $v_{i}=v_{i}\left(x_{k}, t\right)$.

It is directly seen that in a steady flow both streamlines and paths are firm curves. Because a particle that all the time moves along the tangent to a curve will stay on this curve, it is finally seen that in a steady flow streamlines and particle paths coincide.
Notice, that this is not the case in unsteady flows.

- Uniform flow

In areas where the streamlines are parallel, and the velocity is constant along a streamline, the flow is called uniform or unvarying. Such a flow in a pipe is also called fully developed flow. However, the flow is called non-uniform or varying in areas, where the mutual distance between the streamlines varies, and the velocity varies along a stream line, see Fig. 1.4.


Figure 1.4: Uniform and non-uniform flow.


Figure 1.5: Laminar and turbulent flow.

- laminar flow

If we consider e.g. the flow in a pipe, so-called laminar flow is present at rather small velocities. This flow is characterized by a smooth variation of the velocity field and if the paths (=streamlines in steady flow) are visualized by e.g. smoke or dye, it looks like the flow consists of layers (laminae in Latin). If dye is injected into the flow through a thin pipe, the colored line will appear sharply over a fairly long distance, see Fig. 1.5.
If the rate of volume supplied to the pipe is constant, the velocity at every point is constant with time, and the flow is steady.
If the rate of supplied volume is varying with time, the flow is unsteady and the velocity at every point is varying with time, but in a laminar flow this variation is smooth.

- turbulent flow

When the velocity in a pipe is raised above a specific level the type of flow changes from laminar to turbulent. The latter flow type looks highly
restless, because the main flow is full of eddies of different sizes. The presence of these eddies causes a strong mixing of dye from a thin pipe, and the coloured line quickly goes blurred in a turbulent flow, see Fig. 1.5.

A time series of the velocity at a point shows strong variations (fluctuations) even though the rate of supplied volume is constant with time. Turbulent flows are in principle always unsteady.

Normally, it is impossible to describe all the details of the short periodic fluctuations, and in practice one has to be satisfied by a description of velocities, which are smoothed with time. All frequencies above a specific limit are filtered away by use of a so-called low-pass filter. The most primitive way of doing this is by calculation of the mean value of the velocity over a given time interval. The flow corresponding to these smoothed velocities is often called the mean flow.

A constant rate of supplied volume leads to a time invariant mean flow, and the corresponding flow is often called steady turbulent flow, even though it should be called steady mean flow.

The transition from laminar to turbulent flow always takes place if the velocity is exceeding a specific value. An observation that is supported by theoretical considerations, see chapter 5.1. Observations and theory have shown that the type of flow depends on the so-called Reynolds' number:

$$
\operatorname{Re}=\frac{V \cdot L}{\nu}[-]
$$

where
$V \quad$ is a characteristic velocity $[\mathrm{m} / \mathrm{s}]$
$L \quad$ is a characteristic length [ m ]
$\nu \quad$ is the kinematic viscosity of the fluid $\left[\mathrm{m}^{2} / \mathrm{s}\right]$
[-] means that Re is a non-dimensional parameter

### 1.4 Rate of Change

We consider a scalar, $\varphi$, which may depend on both position and time, i.e.

$$
\begin{equation*}
\varphi=\varphi\left(x_{k}, t\right) \tag{1.16}
\end{equation*}
$$

Typical examples of such a scalar are pressure, $p$, temperature, $T$, or a component of the particle velocity like $v_{1}$.

We will focus on the changes of $\varphi$ that are observed by an observer moving in space with the velocity :

$$
\begin{equation*}
U_{i}^{o b s}=\frac{d x_{i}^{o b s}}{d t} \tag{1.17}
\end{equation*}
$$

If the observer moves the distance $d x_{i}$ away from the initial position during $d t$ seconds, we know from mathematics that the change of $\varphi$ reads:

$$
\begin{equation*}
d \varphi=\frac{\partial \varphi}{\partial t} d t+\frac{\partial \varphi}{\partial x_{1}} d x_{1}^{o b s}+\frac{\partial \varphi}{\partial x_{2}} d x_{2}^{o b s}+\frac{\partial \varphi}{\partial x_{3}} d x_{3}^{o b s} \tag{1.18}
\end{equation*}
$$

Division by $d t$ on both sides of the equation gives:

$$
\begin{align*}
\frac{d \varphi}{d t} & =\frac{\partial \varphi}{\partial t}+\frac{\partial \varphi}{\partial x_{1}} \frac{d x_{1}^{o b s}}{d t}+\frac{\partial \varphi}{\partial x_{2}} \frac{d x_{2}^{o b s}}{d t}+\frac{\partial \varphi}{\partial x_{3}} \frac{d x_{3}^{o b s}}{d t} \\
& =\frac{\partial \varphi}{\partial t}+\frac{\partial \varphi}{\partial x_{i}} \cdot U_{i}^{o b s} \tag{1.19}
\end{align*}
$$

after equation (1.17) has been substituted. As the quantity $d \varphi / d t$ indicates how quickly the scalar is changing, it feels natural to call it the rate of change of the scalar. Notice that the rate of change is directly proportional to the velocity of the observer.

If the observer remains on the spot, i.e. $U_{i}^{\text {obs }}=0$, giving

$$
\frac{d \varphi}{d t}=\frac{\partial \varphi}{\partial t}
$$

it is natural to name $\frac{\partial \varphi}{\partial t}$ the local rate of change.

Example: Rate of change of pressure.
Around a depression (low pressure) the isobars (lines with constant pressure) are situated as shown in Fig. 1.6. The depression and the isobars are moving in the negative direction of the $x_{1}$-axis at the constant velocity 20 km/hour.
A train is moving at the constant velocity $V_{\text {train }}=75 \mathrm{~km} /$ hour in the direction of the $x_{1}$-axis.
What rate of change of the pressure (mb/hour) is observed on a barometer in the train?
In this case the equation for the rate of change reads:

$$
\left(\frac{d p}{d t}\right)_{t r a i n}=\frac{\partial p}{\partial t}+\frac{\partial p}{\partial x_{1}} \cdot V_{t r a i n}
$$



Figure 1.6: Rate of change of pressure in a train.

Because the isobars are moving 100 km in 5 hours, a decline in pressure of 10 mb in 5 hours is observed at a fixed point. This gives:

$$
\frac{\partial p}{\partial t} \approx \frac{\Delta p}{\Delta t}=\frac{-10}{5}=-2 \mathrm{mb} / \mathrm{hour}
$$

Furthermore, the pressure declines 10 mb per 100 km in the direction of the $x_{1}$-axis, giving:

$$
\frac{\partial p}{\partial x_{1}} \approx \frac{\Delta p}{\Delta x_{1}}=\frac{-10}{100}=-0.1 \mathrm{mb} / \mathrm{km}
$$

The total rate of change of pressure in the train therefore reads:

$$
\left(\frac{d p}{d t}\right)_{\text {train }}=-2.0+(-0.1 \cdot 75)=-2.0-7.5=\underline{-9.5 \mathrm{mb} / \mathrm{hour}}
$$

Often we are interested in the rate of change corresponding to an observer following a specific fluid particle, i.e. we have $U_{i}^{\text {obs }}=v_{i}$. This rate of change is often called the substantial rate of change or the particle rate of change. Both names try to invoke the feeling that we are following a specific particle. Sometimes the substantial derivative is given the special symbol $D / D t$, purely a mnemonic device, not intended to frighten the readers! The part of the rate of change caused by the motion of the observer ( $=$ the motion of the particles) is called the convective rate of change.

The rate of change of the velocity component (i.e a scalar) $v_{1}$ reads:

$$
\frac{d v_{1}}{d t}=\frac{\partial v_{1}}{\partial t}+\frac{\partial v_{1}}{\partial x_{i}} \cdot U_{i}^{o b s}
$$

Because we have similar expressions for the two other velocity components, it is seen that the expression for the rate of change of a scalar can be generalized also to be valid for vectors, i.e.

$$
\begin{equation*}
\frac{d v_{k}}{d t}=\frac{\partial v_{k}}{\partial t}+\frac{\partial v_{k}}{\partial x_{i}} \cdot U_{i}^{o b s} \tag{1.20}
\end{equation*}
$$

If the observer follows a specific fluid particle, i.e. $U_{i}^{o b s}=v_{i}$, the substantial rate of change for the particle velocity reads:

$$
\begin{equation*}
\frac{d v_{k}}{d t}\left(=\frac{D v_{k}}{D t}\right)=\frac{\partial v_{k}}{\partial t}+\frac{\partial v_{k}}{\partial x_{i}} \cdot v_{i} \tag{1.21}
\end{equation*}
$$

Because this substantial rate of change is the change of velocity per unit time for the actual particle, it is in fact the acceleration of the fluid particle.

Equation (1.21) can also be adopted to explain why acceleration may be present in steady flow. Steady flow means that all velocities do not change with time at fixed points, or we have the local rate of change of the velocity equal to zero everywhere. But the convective part of the rate of change caused by the motion of the observer ( $=$ the motion of the particles) is different from zero if the velocity gradient

$$
\operatorname{grad} \vec{v}=\frac{\partial v_{k}}{\partial x_{i}} \neq 0
$$

This is the case for e.g. the flow in a channel of varying width.

### 1.5 The Continuity Equation

Conservation of mass is the basis for one of the most important equations in fluid dynamics.

The flow through a fixed, closed surface of arbitrary shape, $A$, is considered. The surface $A$ bounds the volume $X$. If the outward unit normal to the surface is denoted $\vec{n}$, the definition of the area vector, $\overrightarrow{d A}$, corresponding to the area $d A$, reads:

$$
\begin{equation*}
\overrightarrow{d A}=\vec{n} \cdot d A \tag{1.22}
\end{equation*}
$$

The length of the area vector is therefore equal to the corresponding area, because $|\vec{n}|=1$. The increase in mass inside the surface is equal to the resultant inflow of mass through the surface. In vector notation this can be expressed as:

$$
\begin{equation*}
\int_{X} \frac{\partial \rho}{\partial t} d X=\int_{A}-\rho \vec{v} \cdot \overrightarrow{d A} \tag{1.23}
\end{equation*}
$$



Figure 1.7: The equation of continuity. Definition sketch.
and in tensor notation as:

$$
\begin{equation*}
\int_{X} \frac{\partial \rho}{\partial t} d X=\int_{A}-\rho v_{i} d A_{i} \tag{1.24}
\end{equation*}
$$

This equation can be rewritten by adopting Gauss' divergence theorem, which in vector notation reads:

$$
\begin{equation*}
\int_{A} \vec{l} \cdot \vec{d} A=\int_{X} \operatorname{div} \vec{l} d X \tag{1.25}
\end{equation*}
$$

and in tensor notation reads:

$$
\begin{equation*}
\int_{A} l_{i} d A_{i}=\int_{X} \frac{\partial l_{i}}{\partial x_{i}} d X \tag{1.26}
\end{equation*}
$$

Here divergence of a vector field, $\vec{l}$, is defined as

$$
\begin{equation*}
\operatorname{div} \vec{l}=\frac{\partial l_{1}}{\partial x_{1}}+\frac{\partial l_{2}}{\partial x_{2}}+\frac{\partial l_{3}}{\partial x_{3}}=\frac{\partial l_{i}}{\partial x_{i}} \tag{1.27}
\end{equation*}
$$

If the vector field, $l_{i}=-\rho v_{i}$, is considered, Gauss's divergence theorem reads:

$$
\int_{A}-\rho v_{i} d A_{i}=-\int_{X} \frac{\partial\left(\rho v_{i}\right)}{\partial x_{i}} d X
$$

which substituted into equation (1.24) gives

$$
\begin{gathered}
\int_{X} \frac{\partial \rho}{\partial t} d X=-\int_{X} \frac{\partial\left(\rho v_{i}\right)}{\partial x_{i}} d X \Rightarrow \\
\int_{X}\left(\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho v_{i}\right)}{\partial x_{i}}\right) d X=0
\end{gathered}
$$

This equation is only fulfilled for an arbitrary choice of $X$, if the expression in the parenthesis fulfills:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho v_{i}\right)}{\partial x_{i}}=0 \tag{1.28}
\end{equation*}
$$

which is called the continuity equation.
Differentiation with respect to $x_{i}$ gives:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial x_{i}} v_{i}+\rho \frac{\partial v_{i}}{\partial x_{i}}=0 \tag{1.29}
\end{equation*}
$$

Following a specific particle the rate of change of the density, $\rho$, reads:

$$
\frac{d \rho}{d t}=\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial x_{i}} v_{i}
$$

Equation (1.28) can therefore be rewritten to:

$$
\begin{equation*}
\frac{d \rho}{d t}+\rho \frac{\partial v_{i}}{\partial x_{i}}=0 \tag{1.30}
\end{equation*}
$$

As shown earlier, it is a good approximation in many situations to consider a fluid incompressible, i.e. $\rho=$ constant $\Leftrightarrow d \rho=0$ for a particle moving with the flow. Consequently, the substantial rate of change reads:

$$
\frac{d \rho}{d t}=0
$$

which substituted into equation (1.30) gives the continuity equation for an incompressible fluid:

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial x_{i}}=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}}=0 \tag{1.31}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{div} \tilde{\mathrm{v}}=0 \tag{1.32}
\end{equation*}
$$

### 1.6 Vorticity

A very important vector quantity in fluid dynamic is defined by the cross-product between the gradient vector $\partial() / \partial x_{i}=\operatorname{grad}()=\vec{\nabla}()$ and the velocity vector $v_{i}=\vec{v}$. The new vector is called the vorticity of the velocity field and is normally denoted curl $\vec{v}$ or rot $\vec{v}$. In the rest of this book the notation rot $\vec{v}$ is adopted. Because the author finds it rather difficult to understand equations where crossproducts are expressed in tensor notation, all equations with cross-products are expressed in vector notation below. Notice also that in the following the vectors $\vec{e}_{1}, \vec{e}_{2}$ and $\vec{e}_{3}$ denote unit vectors in the directions of the $x_{1^{-}}, x_{2^{-}}$and $x_{3}$-axis, respectively.

$$
\operatorname{rot} \vec{v} \equiv \vec{\nabla} \times \vec{v}=\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3}  \tag{1.33}\\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left[\begin{array}{c}
\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}} \\
\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}} \\
\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}
\end{array}\right]
$$

In the descriptions of flowing fluids rot $\vec{v}$ frequently appears, and in practice it is important to determine, whether $\operatorname{rot} \vec{v}=\overrightarrow{0}$ or not. Fortunately, it is possible to give a physical interpretation of $\operatorname{rot} \vec{v}$. To do this we consider the motions of the fluid particles placed on two lines originally perpendicular to each other. The placement of the two line segments is found before and after the time $d t$ has elapsed, see Fig. 1.8. The line segment AB turns the angle $d \alpha[\mathrm{rad}]$ during


Figure 1.8: Angular motions of line segments in a velocity field.
$d t$ [secs], and the expression for $d \alpha$ reads:

$$
d \alpha=\frac{\frac{\partial v_{2}}{\partial x_{1}} d x_{1} d t}{d x_{1}+\frac{\partial v_{1}}{\partial x_{1}} d x_{1} d t}
$$

This gives the angular velocity:

$$
\omega_{A B}=\frac{d \alpha}{d t}=\frac{\frac{\partial v_{2}}{\partial x_{1}} d x_{1}}{d x_{1}+\frac{\partial v_{1}}{\partial x_{1}} d x_{1} d t}
$$

For $d t \rightarrow 0$ we find:

$$
\begin{equation*}
\omega_{A B}=\frac{\frac{\partial v_{2}}{\partial x_{1}} d x_{1}}{d x_{1}}=\frac{\partial v_{2}}{\partial x_{1}} \tag{1.34}
\end{equation*}
$$

In the same way we find for the segment AC :

$$
d \beta=\frac{-\frac{\partial v_{1}}{\partial x_{2}} d x_{2} d t}{d x_{2}+\frac{\partial v_{2}}{\partial x_{2}} d x_{2} d t}
$$

The negative sign is caused by a negative angular motion for $\frac{\partial v_{1}}{\partial x_{2}}>0$. The angular velocity of AC reads:

$$
\begin{equation*}
\omega_{A C}=\frac{-\frac{\partial v_{1}}{\partial x_{2}} d x_{2}}{d x_{2}}=-\frac{\partial v_{1}}{\partial x_{2}} \tag{1.35}
\end{equation*}
$$

Hereafter we find the mean angular velocity for the two segments to be:

$$
\begin{equation*}
\omega_{\text {mean }}=\frac{1}{2}\left(\omega_{A B}+\omega_{A C}\right)=\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) \tag{1.36}
\end{equation*}
$$

If this expression is compared to the 3 -component of $\operatorname{rot} \vec{v}$, it is seen that

$$
\omega_{\text {mean }}=\frac{1}{2}(\operatorname{rot} \vec{v})_{3}
$$

or

$$
\begin{equation*}
(\operatorname{rot} \vec{v})_{3}=2 \cdot \omega_{\text {mean }} \tag{1.37}
\end{equation*}
$$

Physically it is therefore possible to determine if $(\operatorname{rot} \vec{v})_{3}=0$ or not, if we can visualize $\omega_{\text {mean }}$. The easiest way to do this is by insertion of a so-called "vorticity meter" into the fluid. The vorticity meter consists of two plates fixed at a right angle to each other. The plates may rotate around the line of intersection between the two plates. Each plate tries to move with the surrounding fluid. If the meter is not rotating, the two plates are therefore trying to rotate at equal, but opposite angular velocities. This corresponds to $\omega_{\text {mean }}=0$ and also $(\operatorname{rot} \vec{v})_{3}=0$. By subsequent changes of the axis of rotation, it is possible to find the two other components of $\operatorname{rot} \vec{v}$ in a similar way.

Of course $\operatorname{rot} \vec{v}$ can be found directly from the definition, equation (1.33), if the velocity field is known. Sometimes it might be easier to determine rot $\vec{v}$ indirectly by adopting Stokes' theorem:

$$
\begin{equation*}
\int_{L} \vec{v} \cdot \overrightarrow{d s}=\int_{A} \operatorname{rot} \vec{v} \cdot \vec{n} d A \tag{1.38}
\end{equation*}
$$



Figure 1.9: Device ("Vorticity meter") for "measurement" of the $x_{3}$-component of $\operatorname{rot} \vec{v}$.


Figure 1.10: Stokes's theorem, definition sketch.
where $\overrightarrow{d s}$ is a vector on the closed curve $L$ bounding the surface $A$ and $\vec{n}$ is the unit normal to $A$. The left-hand side of Stokes's theorem is often called the circulation defined by $\Gamma=\int_{L} \vec{v} \cdot \overrightarrow{d s}$.
We consider a plane surface with an area $A$, so small that $\operatorname{rot} \vec{v} \approx$ constant and $\vec{n} \approx$ constant can be assumed over the area, and the velocity is varying linearly along the boundary. In such a case Stokes's theorem reads:

$$
\begin{equation*}
\Gamma=\sum_{L} \vec{v} \cdot \overrightarrow{\Delta s}=\operatorname{rot} \vec{v} \cdot \vec{n} A \tag{1.39}
\end{equation*}
$$

If $A$ is placed in the $x_{1} x_{2}$-plane, we have $\operatorname{rot} \vec{v} \cdot \vec{n}=(\operatorname{rot} \vec{v})_{3}$ and from equation (1.39) one finds:

$$
(\operatorname{rot} \vec{v})_{3}=\frac{\sum_{L} \vec{v} \cdot \overrightarrow{\Delta s}}{A}
$$

It should also be stressed that in principle the size of $\operatorname{rot} \vec{v}$ has nothing to do with the shape of the particle path. To demonstrate this we consider two plane flows both having concentric circles as paths.


Figure 1.11: Usage of Stokes's theorem to calculate $(\operatorname{rot} \vec{v})_{3}$.

Example 1: irrotational flow (rot $\vec{v}=\overrightarrow{0}$ )


Figure 1.12: Irrotational, $\operatorname{rot} \vec{v}=\overrightarrow{0}$ for $r>0$.

The velocity field in this example expressed in polar coordinates reads:

$$
\vec{v}=\left(v_{r}, v_{\theta}\right)=\left(0, \frac{k}{r}\right)
$$

where $k$ is a constant. The tangential velocity component is inversely proportional to the distance to the origin, and the flow is two-dimensional. In this flow the two plates of a vorticity meter will be affected to turn in opposite directions. A plate directed in the radial direction will turn clockwise and a plate directed in the tangential direction will turn counterclockwise. If a physical experiment is conducted it can be seen that the meter is not turning. We therefore know that $(\operatorname{rot} \vec{v})_{3}=0$. This can of course also be shown mathematically, and in this case it is very easily done by adopting Stokes's theorem.

Example 2: rotational flow (rot $\vec{v} \neq \overrightarrow{0}$ )
The velocity field in this example expressed in polar coordinates reads:

$$
\vec{v}=\left(v_{r}, v_{\theta}\right)=(0, \omega \cdot r)
$$

where $\omega$ is a constant. The tangential velocity component is thus proportional to the distance to the origin. It is seen that the flow is twodimensional, and the motion corresponds to a rigid body rotating at the angular velocity $\omega$. The axis of rotation is perpendicular to the $x_{1} x_{2}$-plane.


Figure 1.13: Rotational flow, $\operatorname{rot} \vec{v} \neq \overrightarrow{0}$.


Figure 1.14: Velocity field corresponding to rotation of a rigid body about the $x_{3}$-axis.

In this case both plates of a vorticity meter are affected to turn into the same direction (counter-clockwise). Consequently, the meter will turn counter-clockwise, and we have $(\operatorname{rot} \vec{v})_{3} \neq 0$.
Because both plates will rotate at the angular velocity $\omega$, we have $\omega_{\text {mean }}=$ $\frac{1}{2}(\omega+\omega)=\omega$. From equation (1.37) it is therefore seen that $(\operatorname{rot} \vec{v})_{3}=$ $2 \omega_{\text {mean }}=2 \omega$.

If this two-dimensional flow is described in an $x_{1} x_{2} x_{3}$-coordinate system, it can be seen that the motion corresponds to the rotation of a rigid body about the $x_{3}$-axis at the angular velocity $\vec{\omega}$, see Fig. 1.14.
The velocity field may be expressed as:

$$
\vec{v}=\vec{\omega} \times \vec{r}=\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
0 & 0 & \omega \\
x_{1} & x_{2} & x_{3}
\end{array}\right|=\left(-\omega x_{2}, \omega x_{1}, 0\right)
$$

where $\vec{\omega}=(0,0, \omega)$ is the angular velocity and $\vec{r}=\left(x_{1}, x_{2}, x_{3}\right)$ is the position vector to the point at which the velocity is calculated.
This gives:

$$
\operatorname{rot} \vec{v}=\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
\frac{\partial}{\partial x_{1}} & \frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{3}} \\
-\omega x_{2} & \omega x_{1} & 0
\end{array}\right|=(0,0, \omega-(-\omega))=(0,0,2 \omega)
$$

If a fluid rotates about an axis like a rigid body, it is seen that both methods to determine rot $\vec{v}$ result in the equation:

$$
\begin{equation*}
\operatorname{rot} \vec{v}=2 \vec{\omega} \tag{1.40}
\end{equation*}
$$

Thus all fluid particles rotate with a rotation vector, which is half of rot $\vec{v}$.

### 1.7 Instantaneous Velocity Field

In general the velocity field can be expressed as:

$$
\begin{equation*}
v_{i}=v_{i}\left(x_{k}, t\right) \tag{1.41}
\end{equation*}
$$

where $x_{k}$ is the coordinate to a fixed point and $t$ is the time.
We now want to consider the flow at a specific moment, $t_{0}$. Time is therefore not an independent variable of the considered velocity field, which we name the instantaneous velocity field. We denote this field

$$
\begin{equation*}
v_{i}^{i n s t}=v_{i}\left(x_{k}, t_{0}\right) \tag{1.42}
\end{equation*}
$$

In the following the superscript ${ }^{\text {inst }}$ and $t_{0}$ are omitted to improve the overview.


Figure 1.15: Definition sketch, instantaneous velocity field.

Furthermore, we only consider the instantaneous velocity field at points close to point $P$ situated at $\vec{x}_{P}$. The particle velocity at this point is denoted $\vec{v}_{P}$. Similarly, position and velocity at the adjacent point $Q$ are denoted $\vec{x}_{Q}$ and $\vec{v}_{Q}$, respectively. The following relations are valid:

$$
\vec{x}_{Q}-\vec{x}_{P}=d \vec{x} \quad \text { and } \quad \vec{v}_{Q}-\vec{v}_{P}=d \vec{v}=\left(d v_{1}, d v_{2}, d v_{3}\right)
$$

where

$$
\begin{align*}
d v_{1} & =\left.\frac{\partial v_{1}}{\partial x_{1}}\right|_{P} d x_{1}+\left.\frac{\partial v_{1}}{\partial x_{2}}\right|_{P} d x_{2}+\left.\frac{\partial v_{1}}{\partial x_{3}}\right|_{P} d x_{3} \\
& =\left.\frac{\partial v_{1}}{\partial x_{j}}\right|_{P} d x_{j}=\left.\operatorname{grad}\left(v_{1}\right)\right|_{P} \cdot \overrightarrow{d x} \tag{1.43}
\end{align*}
$$

where $\left.\right|_{P}$ means that the quantity is calculated at point $P$.
Equation (1.43) can be generalized to

$$
\begin{equation*}
d v_{i}=\left.\frac{\partial v_{i}}{\partial x_{j}}\right|_{P} d x_{j}=\left.\operatorname{grad}\left(v_{i}\right)\right|_{P} \cdot \overrightarrow{d x} \tag{1.44}
\end{equation*}
$$

where the tensor $\frac{\partial v_{i}}{\partial x_{j}}$ is called the velocity gradient-tensor.
Again, to improve the overview $\left.\right|_{P}$ is omitted below. However, it is essential for the physical interpretations to remember that all gradients are calculated at point $P$.

The velocity gradient tensor can be divided into a symmetric part and an antisymmetric part, which gives

$$
\begin{equation*}
d v_{i}=\frac{\partial v_{i}}{\partial x_{j}} d x_{j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) d x_{j}+\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial v_{j}}{\partial x_{i}}\right) d x_{j} \tag{1.45}
\end{equation*}
$$

This equation can be rewritten to

$$
\begin{equation*}
d v_{i}=e_{i j} d x_{j}+w_{i j} d x_{j} \tag{1.46}
\end{equation*}
$$

where the deformation tensor $e_{i j}$ is defined as

$$
\begin{equation*}
e_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \tag{1.47}
\end{equation*}
$$

and the spin tensor $w_{i j}$ is defined as

$$
\begin{equation*}
w_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}-\frac{\partial v_{j}}{\partial x_{i}}\right) \tag{1.48}
\end{equation*}
$$

The two tensors written fully read:

$$
e_{i j}=\left[\begin{array}{ccc}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{1}}\right)  \tag{1.49}\\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{2}}\right) & \frac{\partial v_{2}}{\partial x_{2}} & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{3}}\right) & \frac{\partial v_{3}}{\partial x_{3}}
\end{array}\right]
$$

and

$$
w_{i j}=\left[\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}}\right)  \tag{1.50}\\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) & 0 & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}\right) & 0
\end{array}\right]
$$

From the equations (1.49) and (1.50) it is clearly seen that the deformation tensor is symmetric and the spin tensor is antisymmetric.

By substitution of the definitions:

$$
\begin{align*}
d v_{i}^{\text {def }} & =e_{i j} d x_{j}  \tag{1.51}\\
d v_{i}^{\text {spin }} & =w_{i j} d x_{j} \tag{1.52}
\end{align*}
$$

the increment in velocity corresponding to the instantaneous velocity field reads:

$$
\begin{equation*}
d v_{i}=d v_{i}^{d e f}+d v_{i}^{s p i n} \tag{1.53}
\end{equation*}
$$

### 1.7.1 Deformation Tensor

First we shall show that the motions caused by the velocities corresponding to the deformation tensor, $e_{i j}$ causes a deformation of the body of fluid around point
$P$. This is done by placing a coordinate system with the axes coinciding with the principal directions or eigenvectors for $e_{i j}$. Per definition, the eigenvectors for $e_{i j}$ ( $=\mathbf{e}$ in matrix-notation) are the solutions to the equation

$$
\begin{equation*}
\mathbf{e} d \vec{x}=\lambda d \vec{x} \tag{1.54}
\end{equation*}
$$

or, after substitution of equation (1.51)

$$
\begin{equation*}
d \vec{v}^{d e f}=\lambda d \vec{x} \tag{1.55}
\end{equation*}
$$

To solve this equation means to determine the values of $\lambda$, called eigenvalues, for which equation (1.55) has a non-trivial solution $d \vec{x}$, called an eigenvector.

Based on equation (1.54) we might also say that if a step is taken in the direction of an eigenvector, the observed change in velocity is pointing in the same direction as the step vector.

From mathematics it is known that any real, symmetric $3 x 3$ tensor always has 3 real values of $\lambda$ and 3 corresponding eigenvectors mutually orthogonal.

First we find the eigenvectors corresponding to equation (1.55), which in tensor notation reads:

$$
\begin{equation*}
e_{i j} d x_{j}=\lambda d x_{i} \quad \Leftrightarrow \quad e_{i j} d x_{j}-\lambda d x_{i}=0 \tag{1.56}
\end{equation*}
$$

Introduction of Kronecker's tensor, $\delta_{i j}$, defined as

$$
\delta_{i j}= \begin{cases}1 & \text { for } i=j \\ 0 & \text { for } i \neq j\end{cases}
$$

gives $d x_{i}=\delta_{i j} d x_{j}$, and equation (1.56) can be rewritten to

$$
\begin{equation*}
\left(e_{i j}-\lambda \delta_{i j}\right) d x_{j}=0 \tag{1.57}
\end{equation*}
$$

In order to find non-trivial solutions to this homogeneous system of equations, the determinant of the coefficients has to be zero, i.e. $\operatorname{det}\left(e_{i j}-\lambda \delta_{i j}\right)=0$. This gives a 3 rd order equation of $\lambda$, and the three solutions are denoted $\lambda_{I}, \lambda_{I I}$ and $\lambda_{I I I}$, respectively. Hereafter equation (1.57) is solved three times, where the values of $\lambda$ are substituted in turn. The three solutions, the eigenvectors, are denoted $\left(d x_{I}\right)_{i},\left(d x_{I I}\right)_{i}$ and $\left(d x_{I I I}\right)_{i}$, respectively.

All quantities expressed in the coordinate system having the axes coinciding with the eigenvectors and origin at point $P$, are now marked by an asterisk $\left({ }^{*}\right)$.

If $e_{i j}$ is transformed into the eigenvector system, denoted $x_{1}^{*} x_{2}^{*} x_{3}^{*}$, it is known
that $e_{i j}^{*}$ becomes a diagonal tensor with the eigenvalues in the diagonal, i.e.

$$
e_{i j}^{*}=\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]^{*}=\left[\begin{array}{ccc}
e_{11}^{*} & 0 & 0 \\
0 & e_{22}^{*} & 0 \\
0 & 0 & e_{33}^{*}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{I} & 0 & 0 \\
0 & \lambda_{I I} & 0 \\
0 & 0 & \lambda_{I I I}
\end{array}\right]
$$

If the vector $d v_{i}^{\text {def }}$ is transformed into the $x_{1}^{*} x_{2}^{*} x_{3}^{*}$-system, the expression for $\left(d v_{i}^{\text {def }}\right)^{*}$ reads:

$$
\begin{align*}
\left(d v_{i}^{\text {def }}\right)^{*} & =\left[\begin{array}{l}
d v_{1}^{\text {def }} \\
d v_{2}^{\text {def }} \\
d v_{3}^{\text {def }}
\end{array}\right]^{*}=\left[\begin{array}{ccc}
e_{11}^{*} & 0 & 0 \\
0 & e_{22}^{*} & 0 \\
0 & 0 & e_{33}^{*}
\end{array}\right]_{P}\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right]^{*}  \tag{1.58}\\
& =\left[\begin{array}{l}
\left.e_{11}^{*}\right|_{P} \cdot d x_{1}^{*} \\
\left.e_{22}^{*}\right|_{P} \cdot d x_{2}^{*} \\
\left.e_{33}^{*}\right|_{P} \cdot d x_{3}^{*}
\end{array}\right] \tag{1.59}
\end{align*}
$$

From this expression is seen that the velocity changes due to the deformation tensor are proportional to the distance to point $P$. These motions are only


Figure 1.16: Motions caused by $e_{i j}$.
possible, if the fluid around $P$ is deformed. This is very easy to see, if the motions of the points $A, B, C$ and $D$ are considered, see Fig. 1.16.

### 1.7.2 The Spin Tensor

Consider the motions caused by the term from the spin tensor. Due to the frequent appearance of the components of rot $\vec{v}$ the definition of this vector is
recapitulated:

$$
\operatorname{rot} \vec{v}=\left[\begin{array}{c}
(\operatorname{rot} \vec{v})_{1}  \tag{1.60}\\
(\operatorname{rot} \vec{v})_{2} \\
(\operatorname{rot} \vec{v})_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}} \\
\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}} \\
\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}
\end{array}\right]
$$

It is seen that the velocity change $d v_{i}^{s p i n}$ can be written as

$$
\begin{align*}
& d v_{i}^{\text {spin }}=\left[\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) & 0 & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}\right) & 0
\end{array}\right]_{P}\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right] \\
& \quad=\frac{1}{2}\left[\begin{array}{ccc}
0 & -(\operatorname{rot} \vec{v})_{3} & (\operatorname{rot} \vec{v})_{2} \\
(\operatorname{rot} \vec{v})_{3} & 0 & -(\operatorname{rot} \vec{v})_{1} \\
-(\operatorname{rot} \vec{v})_{2} & (\operatorname{rot} \vec{v})_{1} & 0
\end{array}\right]_{P}\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right] \tag{1.61}
\end{align*}
$$

This expression is compared to the expression:

$$
\begin{align*}
(\operatorname{rot} \vec{v})_{P} \times \overrightarrow{d x} & =\left|\begin{array}{ccc}
\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\
(\operatorname{rot} \vec{v})_{1} & (\operatorname{rot} \vec{v})_{2} & (\operatorname{rot} \vec{v})_{3} \\
d x_{1} & d x_{2} & d x_{3}
\end{array}\right| \\
& =\left[\begin{array}{ccc}
(\operatorname{rot} \vec{v})_{2} d x_{3}-(\operatorname{rot} \vec{v})_{3} d x_{2} \\
(\operatorname{rot} \vec{v})_{3} d x_{1}-(\operatorname{rot} \vec{v})_{1} d x_{3} \\
(\operatorname{rot} \vec{v})_{1} d x_{2}-(\operatorname{rot} \vec{v})_{2} d x_{1}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & -(\operatorname{rot} \vec{v})_{3} & (\operatorname{rot} \vec{v})_{2} \\
(\operatorname{rot} \vec{v})_{3} & 0 & -(\operatorname{rot} \vec{v})_{1} \\
-(\operatorname{rot} \vec{v})_{2} & (\operatorname{rot} \vec{v})_{1} & 0
\end{array}\right]_{P}\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right] \tag{1.62}
\end{align*}
$$

The comparison of equation (1.61) and equation (1.62) gives:

$$
\begin{equation*}
d \vec{v}^{s p i n}=\frac{1}{2}(\operatorname{rot} \vec{v})_{P} \times \overrightarrow{d x} \tag{1.63}
\end{equation*}
$$

Because the velocity field caused by the spin tensor is described by the crossproduct between a constant vector and the position vector, the velocity field,
therefore, (see example 2) corresponds to a rotation of the fluid as a rigid body around point $P$ with the rotation vector:

$$
\begin{equation*}
\vec{\omega}_{P}=\frac{1}{2}(\operatorname{rot} \vec{v})_{P} \tag{1.64}
\end{equation*}
$$

Once more we see that $\operatorname{rot} \vec{v} \neq \overrightarrow{0}$ at a point means that a fluid particle is rotating about its own axis.

### 1.7.3 Resulting Motion

Based on the experience obtained from the subsections 1.7.1 and 1.7.2, it is concluded that close to point $P$ the instantaneous velocity field is caused by the following motions of the fluid:

1) a translation with velocity $\vec{v}_{P}$
2) a deformation due to the deformation tensor $e_{i j}$
3) a rotation with rotational vector $\vec{\omega}=\frac{1}{2}(\operatorname{rot} \vec{v})_{P}$ due to the spin tensor $w_{i j}$

This is illustrated by the following important example.

## Example 3: Couette-flow

Deformations and rotations are considered in a steady, two-dimensional flow with the velocity field:

$$
\begin{aligned}
& v_{1}=2 k x_{2}, \text { where } k \text { is a positive constant } \\
& v_{2}=0 \\
& v_{3}=0
\end{aligned}
$$

The velocity profile is shown in Fig. 1.17. In practice this flow is seen between two parallel, plane plates, if the upper plate is moved at a constant velocity in its own plane and the lower plate is fixed.


Figure 1.17: Couette-flow: velocity profile.

Because $\partial v_{1} / \partial x_{1}=0, \partial v_{1} / \partial x_{2}=2 k$ and $\partial v_{1} / \partial x_{3}=0$ and all other derivatives are zero, the velocity gradient tensor reads:

$$
\frac{\partial v_{i}}{\partial x_{j}}=\left[\begin{array}{ccc}
0 & 2 k & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The deformation tensor reads:

$$
\begin{aligned}
e_{i j} & =\left[\begin{array}{ccc}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{2}}\right) & \frac{\partial v_{2}}{\partial x_{2}} & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{3}}\right) & \frac{\partial v_{3}}{\partial x_{3}}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & \frac{1}{2}(2 k+0) & \frac{1}{2}(0+0) \\
\frac{1}{2}(0+2 k) & 0 & \frac{1}{2}(0+0) \\
\frac{1}{2}(0+0) & \frac{1}{2}(0+0) & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & k & 0 \\
k & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

and the spin tensor reads:

$$
\begin{aligned}
w_{i j} & =\left[\begin{array}{ccc}
0 & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) & 0 & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{3}}-\frac{\partial v_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{3}}\right) & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & \frac{1}{2}(2 k+0) & \frac{1}{2}(0+0) \\
\frac{1}{2}(0-2 k) & 0 & \frac{1}{2}(0+0) \\
\frac{1}{2}(0+0) & \frac{1}{2}(0+0) & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The eigenvalues of $e_{i j}$ are found from the equation

$$
\begin{gathered}
\operatorname{det}\left(e_{i j}-\lambda \delta_{i j}\right)=0 \quad \Leftrightarrow \\
\left|\begin{array}{ccc}
0-\lambda & k & 0 \\
k & 0-\lambda & 0 \\
0 & 0 & 0-\lambda
\end{array}\right|=0 \quad \Leftrightarrow \\
(0-\lambda)^{3}-(0-\lambda) \cdot k \cdot k=0
\end{gathered}
$$

which after solution gives these eigenvalues:

$$
\begin{aligned}
\lambda_{I} & =-k \\
\lambda_{I I} & =k \\
\lambda_{I I I} & =0
\end{aligned}
$$

The corresponding principal directions (eigenvectors) read:

$$
\begin{aligned}
\left(d x_{I}\right)_{i} & =\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}, 0\right) \\
\left(d x_{I I}\right)_{i} & =\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 0\right) \\
\left(d x_{I I I}\right)_{i} & =(0,0,1)
\end{aligned}
$$

These directions are shown in Fig. 1.18. Note that all three vectors are prescribed to have unit length. Transformed into the $x_{1}^{*} x_{2}^{*} x_{3}^{*}$-system the component from the deformation reads:

$$
\left(d v_{i}^{\text {def }}\right)^{*}=\left[\begin{array}{ccc}
-k & 0 & 0 \\
0 & +k & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
d x_{1}^{*} \\
d x_{2}^{*} \\
d x_{3}^{*}
\end{array}\right]=\left[\begin{array}{c}
-k d x_{1}^{*} \\
k d x_{2}^{*} \\
0
\end{array}\right]
$$



Figure 1.18: Principal directions (eigenvectors) in Couette-flow.

In Fig. 1.19 it is sketched, how this velocity field will deform an originally square element (broken line) around $P$ into a rhombus (full line), because the element is shortened in the $x_{1}^{*}$-direction and extended in the $x_{2}^{*}$-direction. Thus the velocity field corresponding to the spin tensor rotates the rhombus clockwise (as $k>0$ ), see Fig. 1.20, because

$$
\vec{\omega}=\frac{1}{2} \operatorname{rot} \vec{v}=\frac{1}{2}(0,0,-2 k)=(0,0,-k)
$$

Note that even though the correct size of the motions of the 4 corners has not been calculated, it is seen from Fig. 1.21 that added up, the three different motions, translation, deformation and rotation, might be able to produce the correct motion of the originally square element, i.e. a translation and a horizontal motion of the upper side of the square.


Figure 1.19: Deformation of the fluid element at $P$.


Figure 1.20: Rotation of the fluid element at $P$.


Figure 1.21: Resulting motion of a fluid element at $P$.

### 1.8 Velocity Potential

In this section we will consider irrotational flows, i.e. flows with velocity fields fulfilling the condition

$$
\operatorname{rot} \vec{v}=\overrightarrow{0}
$$

This fulfillment causes substantial computational savings, when the velocity field is calculated, as the velocity vector flow can be calculated by

$$
\vec{v}=\operatorname{grad} \varphi
$$

or

$$
\begin{equation*}
v_{i}=\frac{\partial \varphi}{\partial x_{i}} \tag{1.65}
\end{equation*}
$$

where the scalar $\varphi$ is called the velocity potential. It is thus only necessary to determine one variable, $\varphi$, within the flow domain, because $v_{1}, v_{2}$ og $v_{3}$ can subsequently be calculated by equation (1.65). Due to the existence of the velocity potential, irrotational flow is also often called potential flow.

First it is shown that a single-valued function, $\varphi$, exists, if the condition $\operatorname{rot} \vec{v}=\overrightarrow{0}$ is fulfilled in the flow domain.

To do that we adopt Stokes's theorem:

$$
\begin{equation*}
\Gamma=\int_{L} \vec{v} \cdot d \vec{s}=\int_{A} \operatorname{rot} \vec{v} \cdot d \vec{A} \tag{1.66}
\end{equation*}
$$

If $\operatorname{rot} \vec{v}=\overrightarrow{0}$ everywhere on $A$, we find $\Gamma=0$ along the closed boundary curve, $L$, to $A$. In the following we adopt line integrals of the type

$$
\int_{P}^{Q} \vec{v} \cdot d \vec{s}
$$

where $P$ and $Q$ are two points on the line, and the integration increment, $d \vec{s}$, is defined as positive from the start point $P$ towards the final point $Q$. Adopting equation (1.66) on the curve shown in Fig. 1.22 yields:

$$
\begin{equation*}
\Gamma=\int_{P}^{Q} \vec{v} \cdot d \vec{s}_{I}+\int_{Q}^{P} \vec{v} \cdot d \vec{s}_{I I}=0 \tag{1.67}
\end{equation*}
$$

where index I and II indicate the two parts, which form the total path of the line integral.


Figure 1.22: Paths of line integrals between $P$ and $Q$.
Remembering the sign definition of $d \vec{s}$, we find:

$$
\int_{Q}^{P} \vec{v} \cdot d \vec{s}_{I I}=-\int_{P}^{Q} \vec{v} \cdot d \vec{s}_{I I}
$$

which substituted into equation (1.67) yields:

$$
\begin{equation*}
\int_{P}^{Q} \vec{v} \cdot d \vec{s}_{I}=\int_{P}^{Q} \vec{v} \cdot d \vec{s}_{I I} \tag{1.68}
\end{equation*}
$$

If we choose $P$ as a fixed point and $Q$ as a movable point, the definition:

$$
\begin{equation*}
\varphi_{Q}=\int_{P}^{Q} \vec{v} \cdot d \vec{s} \tag{1.69}
\end{equation*}
$$

therefore gives a single-valued function $\varphi$, because the line integral is independent of the chosen path.

Next it is shown that this definition of $\varphi$ also gives the correct velocity at $Q$, if the velocity is calculated by equation (1.65).

To do so, the two points $Q$ and $Q^{*}$ are placed as shown in Fig. 1.23. According to the definition of $\varphi$, equation (1.69), the difference in potential at the two


Figure 1.23: Calculation of the velocity at point $Q$.
points reads:

$$
\begin{aligned}
\Delta \varphi & =\varphi_{Q^{*}}-\varphi_{Q} \\
& =\int_{P}^{Q^{*}} \vec{v} \cdot d \vec{s}-\int_{P}^{Q} \vec{v} \cdot d \vec{s} \\
& =\int_{P}^{Q} \vec{v} \cdot d \vec{s}+\int_{Q}^{Q *} \vec{v} \cdot d \vec{s}-\int_{P}^{Q} \vec{v} \cdot d \vec{s} \\
& =\int_{Q}^{Q^{*}}\left(v_{1}, v_{2}, v_{3}\right) \cdot\left(d x_{1}, 0,0\right)=\int_{0}^{\Delta x_{1}} v_{1} d x_{1} \\
& =\left(v_{1}\right)_{m} \Delta x_{1}
\end{aligned}
$$

or

$$
\begin{equation*}
\left(v_{1}\right)_{m}=\frac{\Delta \varphi}{\Delta x_{1}} \tag{1.70}
\end{equation*}
$$

where $\left(v_{1}\right)_{m}$ is the velocity component in the $x_{1}$-direction at the point $m$. According to the mean-value theorem for integrals, we only know that $m$ is positioned somewhere between $Q$ and $Q^{*}$, but the exact position is unknown. However, this is not a problem, if we let $Q^{*}$ move arbitrarily close to $Q$. This gives:

$$
\left(v_{1}\right)_{m} \rightarrow\left(v_{1}\right)_{Q} \quad \text { for } \quad \Delta x_{1} \rightarrow 0 \quad \text { and }\left.\quad \frac{\Delta \varphi}{\Delta x_{1}}\right|_{\Delta x_{1} \rightarrow 0}=\frac{\partial \varphi}{\partial x_{1}}
$$

and therefore

$$
\begin{equation*}
\left(v_{1}\right)_{Q}=\frac{\partial \varphi}{\partial x_{1}} \tag{1.71}
\end{equation*}
$$

As similar expressions are found in the $x_{2}$ - and $x_{3}$-directions, it has been shown that $\vec{v}=\operatorname{grad} \varphi$, provided $\varphi$ is defined by equation (1.69).

Note that the above-mentioned proof is valid only, if the region, where $\operatorname{rot} \vec{v}=$ $\overrightarrow{0}$, is a so-called simply connected region. The formal definition of a simply connected region is a region, where any closed curve lying within the area can
be shrunk to a point without leaving the area. Roughly speaking, a simply connected region is a region without holes.

If we consider the flow in Example 1, where $\left(v_{r}, v_{\theta}\right)=(0, k / r)$, we have $\operatorname{rot} \vec{v}=\overrightarrow{0}$ at all points except at $r=0$. A region containing the point $r=0$ is therefore not simply connected.


Figure 1.24: Region with $\operatorname{rot} \vec{v}=\overrightarrow{0}$ for $r>0$.

If the points $P$ and $Q$ are placed as shown in Fig. 1.24, adoption of the two different integration paths, denoted $I$ and $I I$ gives

$$
\begin{equation*}
\left(\varphi_{Q}\right)_{I}=\int_{P}^{Q} \vec{v} \cdot d \vec{s}_{I}=+\frac{k}{r} \frac{1}{2} \pi r=+\frac{1}{2} \pi k \tag{1.72}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\varphi_{Q}\right)_{I I}=\int_{P}^{Q} \vec{v} \cdot d \vec{s}_{I I}=-\frac{k}{r} \frac{3}{2} \pi r=-\frac{3}{2} \pi k \tag{1.73}
\end{equation*}
$$

It is seen that the potential $Q$ is not single-valued, nor is the the gradient of the potential. However, the region may be transformed into a simply connected region by making a slot along a radius through point $P$, see Fig. 1.25. Along the two boundaries on each side of the slot velocities and pressures must be equal. With this slot it is no longer possible to have the origin placed within a region defined by a closed integration path and the potential $Q$ becomes single-valued.

Substitution of $v_{i}=\partial \varphi / \partial x_{i}$ into the continuity equation $\partial v_{i} / \partial x_{i}=0$ yields:

$$
\frac{\partial}{\partial x_{i}}\left(\frac{\partial \varphi}{\partial x_{i}}\right)=0
$$

or

$$
\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{i}}=0
$$

which also can be written as

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{3}^{2}}=0 \tag{1.74}
\end{equation*}
$$



Figure 1.25: Simply connected (slotted) region.

Thus the velocity potential $\varphi$ fulfills the Laplace equation.

## Example: Velocity potential in uniform flow

We want to determine the velocity potential corresponding to two-dimensional, uniform flow, i.e. a flow having the same velocity, $v_{i}=\left(v_{o}, 0\right)$, at all points giving a rectangular velocity profile. See Fig. 1.26.


Figure 1.26: Velocity profile in uniform flow.

A vorticity meter placed in this flow does not rotate, as none of the two plates are affected to turning by the fluid, giving $(\operatorname{rot} \vec{v})_{3}=0$. This may also be seen by calculating $(\operatorname{rot} \vec{v})_{3}$ directly. This gives:

$$
(\operatorname{rot} \vec{v})_{3}=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}=0-0=0
$$

As the flow is two-dimensional, this gives $\operatorname{rot} \vec{v}=\overrightarrow{0}$. Thus uniform flow is a potential flow.

The velocity potential is calculated by usage of the definition equations, i.e.

$$
v_{1}=\frac{\partial \varphi}{\partial x_{1}}=v_{o} \quad \Leftrightarrow \quad \varphi=v_{o} x_{1}+f\left(x_{2}\right)
$$

which substituted into

$$
v_{2}=\frac{\partial \varphi}{\partial x_{2}}=0
$$

gives

$$
0+\frac{\partial f\left(x_{2}\right)}{\partial x_{2}}=0 \quad \Leftrightarrow \quad 0+\frac{d f\left(x_{2}\right)}{d x_{2}}=0
$$

or

$$
f\left(x_{2}\right)=K
$$

where $K$ is a constant. Finally, this gives:

$$
\varphi=v_{o} x_{1}+K
$$

The equipotential lines, i.e. lines where $\varphi$ is constant along the line, are straight lines parallel to the $x_{2}$-axis

### 1.9 Stream Function

For a two-dimensional flow of an incompressible fluid it is possible to define a scalar, called the stream function, which has three convenient properties. We denote the stream function $\psi=\psi\left(x_{1}, x_{2}, t\right)$, and let the following equations define $\psi$ :

$$
\begin{equation*}
v_{1}=-\frac{\partial \psi}{\partial x_{2}} \tag{1.75}
\end{equation*}
$$

$$
\begin{equation*}
v_{2}=+\frac{\partial \psi}{\partial x_{1}} \tag{1.76}
\end{equation*}
$$

Substitution of these definition equations into the expression for divergence yields:

$$
\operatorname{div} \vec{v}=\frac{\partial}{\partial x_{1}}\left(-\frac{\partial \psi}{\partial x_{2}}\right)+\frac{\partial}{\partial x_{2}}\left(\frac{\partial \psi}{\partial x_{1}}\right)=-\frac{\partial^{2} \psi}{\partial x_{1} \partial x_{2}}+\frac{\partial^{2} \psi}{\partial x_{1} \partial x_{2}} \equiv 0
$$

giving that the continuity equation

$$
\begin{equation*}
\operatorname{div} \vec{v}=\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}=0 \tag{1.77}
\end{equation*}
$$

is always fulfilled. This is the first convenient property of the stream function. Notice that it is not necessary to assume $\operatorname{rot} \vec{v}=0$ in order to define a stream function, but the fluid has to be incompressible.

The equation defining a streamline reads:

$$
\frac{d x_{1}}{v_{1}}=\frac{d x_{2}}{v_{2}}
$$

or

$$
v_{2} d x_{1}-v_{1} d x_{2}=0
$$

where $d x_{i}$ is a vector along the streamline. Substitution of equation (1.75) and equation (1.76) into this equation gives:

$$
\begin{equation*}
\frac{\partial \psi}{\partial x_{1}} d x_{1}+\frac{\partial \psi}{\partial x_{2}} d x_{2}=0 \quad \text { along a streamline } \tag{1.78}
\end{equation*}
$$

If the flow is considered at a given time $t=t_{o}$, we have in general:

$$
\begin{equation*}
d \psi=\frac{\partial \psi}{\partial x_{1}} d x_{1}+\frac{\partial \psi}{\partial x_{2}} d x_{2} \tag{1.79}
\end{equation*}
$$

Thus for $d x_{i}$ orientated along the streamline, equation (1.78) gives:

$$
d \psi=0
$$

or

$$
\begin{equation*}
\psi=\text { constant } \quad \text { along a streamline } \tag{1.80}
\end{equation*}
$$

This is the second convenient property of the stream function. A third convenient property is found by considering the difference between values of the stream functions on two streamlines, see Fig. 1.27.


Figure 1.27: Integration path between two streamlines.

The two points $P$ and $Q$ are placed arbitrarily on each of the two streamlines, and a curve of arbitrary shape is drawn between point $P$ and point $Q$. This curve might be considered to be the intersection between a curved surface perpendicular to the flow plane and the flow plane itself. We want to calculate the volume
flux (sometimes also called discharge) per metre through this curved surface. If the volume flux per metre is denoted $q$, the expression for $q$ reads:

$$
\begin{equation*}
q=\int_{P}^{Q} v_{i} n_{i}\left|d x_{i}\right|=\int_{P}^{Q} v_{i} n_{i} d x \tag{1.81}
\end{equation*}
$$

where $n_{i}$ is the unit normal vector pointing in the main flow direction and $d x_{i}$ is placed along the curve between $P$ and $Q$. The expression for $n_{i}$ reads:

$$
n_{i}=\left(-d x_{2}, d x_{1}\right) / d x
$$

as this gives $n_{i} d x_{i}=n_{1} d x_{1}+n_{2} d x_{2}=\left(-d x_{2} d x_{1}+d x_{1} d x_{2}\right) / d x=0$ and $n=\left|n_{i}\right|=1$. Thus the expression for $q$ can be rewritten to:

$$
\begin{align*}
q & =\int_{P}^{Q} v_{i} n_{i} d x=\int_{P}^{Q}\left(v_{1}\left(-d x_{2}\right)+v_{2} d x_{1}\right) \\
& =\int_{P}^{Q}\left(\left(-\frac{\partial \psi}{\partial x_{2}}\right)\left(-d x_{2}\right)+\frac{\partial \psi}{\partial x_{1}} d x_{1}\right)=\int_{P}^{Q} d \psi \\
& =[\psi]_{P}^{Q}=\psi_{Q}-\psi_{P} \tag{1.82}
\end{align*}
$$

The volume flux between two streamlines is therefore equal to the difference between stream function values on the two streamlines. It is also seen that stream function is increasing to the right- hand side, when looking in the flow direction.

## Example : Stream function in uniform flow

We want to determine the stream function corresponding to two-dimensional, uniform flow, i.e. a flow having the same velocity, $v_{i}=\left(v_{o}, 0\right)$, at all points giving a rectangular velocity profile, see Fig. 1.26. From equations 1.75 we get

$$
v_{1}=-\frac{\partial \psi}{\partial x_{2}}=v_{o} \quad \Leftrightarrow \quad \psi=-v_{o} x_{2}+f\left(x_{1}\right)
$$

which substituted into

$$
v_{2}=\frac{\partial \psi}{\partial x_{1}}=0
$$

gives

$$
0+\frac{\partial f\left(x_{1}\right)}{\partial x_{1}}=0 \quad \Leftrightarrow \quad 0+\frac{d f\left(x_{1}\right)}{d x_{1}}=0
$$

or

$$
f\left(x_{1}\right)=C
$$

where $C$ is a constant. Finally, this gives:

$$
\psi=-v_{o} x_{2}+C
$$

The streamlines, i.e. the curves on which $\psi$ is a constant, are therefore straight lines parallel to the $x_{1}$-axis. It is also seen that $\psi$ is increasing to the right-hand side, when looking in the flow direction.

If the equations (1.75) and (1.76) are substituted into

$$
(\operatorname{rot} \vec{v})_{3}=\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}
$$

the result reads:

$$
(\operatorname{rot} \vec{v})_{3}=\frac{\partial}{\partial x_{1}}\left(\frac{\partial \psi}{\partial x_{1}}\right)-\frac{\partial}{\partial x_{2}}\left(-\frac{\partial \psi}{\partial x_{2}}\right)
$$

or

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x_{1}^{2}}+\frac{\partial^{2} \psi}{\partial x_{2}^{2}}=(\operatorname{rot} \vec{v})_{3} \tag{1.83}
\end{equation*}
$$

It is seen that the governing equation for the stream function is a Poisson equation.

If the field of $(\operatorname{rot} \vec{v})_{3}$ is known at a given time, solution of equation (1.83) gives the $\psi$-field, which again makes it possible to find streamlines and the velocity field.

Finally, notice finally that in general it is impossible to define a stream function for 3-dimensional flow. It is, however, possible to do it for flows symmetrical about an axis.

## Chapter 2

## Fluid Dynamics

### 2.1 State of Stress at a Point in a Fluid

In this section it is shown that in general we can adopt a stress concept for a fluid, which is quite analogous to the stress concept normally adopted for solids. In both cases the medium is considered a continuum, but the causes to the stresses in fluids and solids are quite different.

In the description of the motion of a fluid body it is necessary to consider the following two classes of forces: forces acting throughout the mass of the body (gravitational forces) and forces acting on the surface of the body (pressure forces and shear forces) from the surrounding fluid.

We consider a surface with area $\Delta A$ and unit normal vector $\vec{n}$, and we imagine that the fluid is removed on the side in the direction of the normal, but the forces from the removed fluid on the area are kept. Generally these forces are equivalent with the force $\Delta \vec{F}$ and a moment $\Delta \vec{M}$ from a pair of forces. If we divide $\Delta \vec{F}$ by $\Delta A$ and let $\Delta A \rightarrow 0$, the result approaches a limit value called stress vector, $\vec{\sigma}^{N}$, i.e.

$$
\begin{equation*}
\left(\frac{\Delta \vec{F}}{\Delta A}\right)_{\Delta A \rightarrow 0}=\frac{d \vec{F}}{d A}=\vec{\sigma}^{N} \tag{2.1}
\end{equation*}
$$

However, $\Delta \vec{M} / \Delta A \rightarrow 0$ because both the pair of forces and the distance between the forces approach zero.

In general $\vec{\sigma}^{N}$ varies from point to point and it also depends on the direction of the normal $\vec{n}$. If instead we had considered the forces on the other side of the surface, the normal vector should then be expressed as $-\vec{n}$ and the stress vector
on that side is denoted $\vec{\sigma}^{-N}$. According to Newton's 3rd law (action=re-action) we get

$$
\begin{equation*}
\vec{\sigma}^{N}=-\vec{\sigma}^{-N} \tag{2.2}
\end{equation*}
$$

In order to investigate how the stress vector $\vec{\sigma}^{N}$ at a fixed point depends on the direction of the normal, we shall consider at a tetrahedron of fluid cut free from the rest of the fluid, see Fig. 2.1. Stress vectors on surfaces perpendicular to the


Figure 2.1: Definition sketch, forces on surface of thetrahedron.
coordinate axis $x_{i}$ are here denoted $\vec{\sigma}^{i}$, where

$$
\begin{equation*}
\vec{\sigma}^{i}=\left(\sigma_{1}^{i}, \sigma_{2}^{i}, \sigma_{3}^{i}\right) \tag{2.3}
\end{equation*}
$$

is acting on the side of the surface, where the normal points in the same direction as $x_{i}$. Otherwise the stress vector is denoted $\vec{\sigma}^{-i}$. Thus, the stress vector on the surface in the $x_{2} x_{3}$-plane depicted in Fig. 2.1 is denoted $\vec{\sigma}^{-1}$.

The expression for the unit normal $\vec{n}$ reads:

$$
\begin{equation*}
\vec{n}=n_{1} \vec{e}_{1}+n_{2} \vec{e}_{2}+n_{3} \vec{e}_{3}=\left(n_{1}, n_{2}, n_{3}\right)=n_{i} \tag{2.4}
\end{equation*}
$$

If $\theta$ denotes the angle between $\vec{n}$ and $\vec{e}_{1}$, we have $\vec{n} \cdot \vec{e}_{1}=n_{1}=1 \cdot 1 \cdot \cos \theta$ or

$$
n_{1}=\cos \theta
$$

Therefore, $n_{1}$ is often called the direction cosine between the normal and the unit vector $\vec{e}_{1}$. If the expression for $n_{1}$ is substituted into

$$
\begin{equation*}
\overrightarrow{d A} A=d A \vec{n} \quad \text { or } \quad d A_{i}=d A n_{i} \tag{2.5}
\end{equation*}
$$

the expression for the component in the $x_{1}$-direction reads:

$$
d A_{1}=d A \cdot n_{1}=d A \cdot \cos \theta
$$

As $\theta$ is also a the angle between the two planes perpendicular to $\vec{n}$ and $\vec{e}_{1}$, it is seen that $d A_{1}$ is the projection of the area $d A$ on the $x_{2} x_{3}$-plane, see Fig. 2.1.

In the same way it is seen that $n_{2}$ and $n_{3}$ are the direction cosines between the normal and the unit vectors $\vec{e}_{2}$ og $\vec{e}_{3}$, respectively. Also $d A_{2}$ and $d A_{3}$ may be interpreted as projected areas, see Fig. 2.1.

For the tetrahedron the sum of the surface forces reads:

$$
\begin{aligned}
\sum \vec{F}_{\text {surface }} & =\vec{\sigma}^{N} d A+\vec{\sigma}^{-1} d A_{1}+\vec{\sigma}^{-2} d A_{2}+\vec{\sigma}^{-3} d A_{3} \\
& =\vec{\sigma}^{N} d A-\vec{\sigma}^{1} d A_{1}-\vec{\sigma}^{2} d A_{2}-\vec{\sigma}^{3} d A_{3}
\end{aligned}
$$

after adoption of equation (2.2). If gravitation is assumed to be the only body force, Newton's 2nd law for the tetrahedron reads:

$$
\rho d X \frac{\overrightarrow{d v}}{d t}=\rho \vec{g} d X+\vec{\sigma}^{N} d A-\vec{\sigma}^{1} d A_{1}-\vec{\sigma}^{2} d A_{2}-\vec{\sigma}^{3} d A_{3}
$$

Shrinking of the tetrahedron, while keeping $\vec{n}$ constant, gives:

$$
\frac{d X}{d A}=\frac{k d A d l}{d A}=k d l \rightarrow 0 \quad \text { for } \quad d l \rightarrow 0
$$

where $d l$ is a characteristic length of the tetrahedron. In this way Newton's 2nd law reads:

$$
0=0+\vec{\sigma}^{N}-\vec{\sigma}^{1} \frac{d A_{1}}{d A}-\vec{\sigma}^{2} \frac{d A_{2}}{d A}-\vec{\sigma}^{3} \frac{d A_{3}}{d A}
$$

or

$$
\vec{\sigma}^{N}=\vec{\sigma}^{1} \frac{d A_{1}}{d A}+\vec{\sigma}^{2} \frac{d A_{2}}{d A}+\vec{\sigma}^{3} \frac{d A_{3}}{d A}
$$

Here substitution of equation (2.5) gives:

$$
\begin{equation*}
\vec{\sigma}^{N}=\vec{\sigma}^{1} n_{1}+\vec{\sigma}^{2} n_{2}+\vec{\sigma}^{3} n_{3} \tag{2.6}
\end{equation*}
$$

According to equation (2.3) $\sigma_{1}^{1}, \sigma_{1}^{2}$ and $\sigma_{1}^{3}$ are the components in the $x_{1}$-direction of $\vec{\sigma}^{1}, \vec{\sigma}^{2}$ and $\vec{\sigma}^{3}$, respectively. We see that the component in the $x_{1}$-direction of $\vec{\sigma}^{N}$ reads:

$$
\begin{align*}
\sigma_{1}^{N} & =n_{1} \sigma_{1}^{1}+n_{2} \sigma_{1}^{2}+n_{3} \sigma_{1}^{3} \\
& =\left[\begin{array}{lll}
n_{1} & n_{2} & n_{3}
\end{array}\right]\left[\begin{array}{l}
\sigma_{1}^{1} \\
\sigma_{1}^{2} \\
\sigma_{1}^{3}
\end{array}\right] \tag{2.7}
\end{align*}
$$

Similarly it is found that

$$
\sigma_{2}^{N}=n_{1} \sigma_{2}^{1}+n_{2} \sigma_{2}^{2}+n_{3} \sigma_{2}^{3}
$$

and

$$
\sigma_{3}^{N}=n_{1} \sigma_{3}^{1}+n_{2} \sigma_{3}^{2}+n_{3} \sigma_{3}^{3}
$$

These three equations may be compiled to:

$$
\vec{\sigma}^{N}=\left[n_{1} n_{2} n_{3}\right]\left[\begin{array}{lll}
\sigma_{1}^{1} & \sigma_{2}^{1} & \sigma_{3}^{1}  \tag{2.8}\\
\sigma_{1}^{2} & \sigma_{2}^{2} & \sigma_{3}^{2} \\
\sigma_{1}^{3} & \sigma_{2}^{3} & \sigma_{3}^{3}
\end{array}\right]
$$

In tensor notation this equation reads:

$$
\begin{equation*}
\sigma_{i}^{N}=n_{j} \sigma_{i}^{j} \tag{2.9}
\end{equation*}
$$

In the literature it is often seen that both $' i$ ' og ' $j$ ' are written as indices, i.e.

$$
\begin{equation*}
\sigma_{j i}=\sigma_{i}^{j} \tag{2.10}
\end{equation*}
$$

and this notation will be adopted in the following. With this notation equation (2.8) reads:

$$
\vec{\sigma}^{N}=\left[n_{1} n_{2} n_{3}\right]\left[\begin{array}{ccc}
\sigma_{11} & \sigma_{12} & \sigma_{13}  \tag{2.11}\\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

and in tensor notation this equation reads:

$$
\begin{equation*}
\sigma_{i}^{N}=n_{j} \sigma_{j i} \tag{2.12}
\end{equation*}
$$

where $\sigma_{j i}$ is called the stress tensor.
For a solid this tensor is symmetric, and it will be shown below that this is also the case for the stress tensor of a fluid.

A fluid cube with edge length $d x$ is depicted in Fig. 2.2. The figure are also shows the stresses creating a moment about an axis through the centre of gravity of the cube and parallel to the $x_{1}$-axis.


Figure 2.2: Definition sketch, stresses on a cube.

The general equation of motion with respect to the angular motion about the axis reads:

$$
\begin{equation*}
\sum M_{e x t}=I \ddot{\theta} \tag{2.13}
\end{equation*}
$$

where $\sum M_{\text {ext }}$ is the moment from the external forces about the axis, $I$ is the mass moment of inertia about the axis, and $\theta$ is the turning angle. As the external forces are solely stresses on the surface, equation (2.13) reads:

$$
\begin{align*}
\sum M_{e x t}= & +\left(\sigma_{23}+\left(\sigma_{23}-\frac{\partial \sigma_{23}}{\partial x_{2}} d x\right)\right) d x^{2} \frac{d x}{2} \\
& -\left(\sigma_{32}+\left(\sigma_{32}-\frac{\partial \sigma_{32}}{\partial x_{3}} d x\right)\right) d x^{2} \frac{d x}{2} \tag{2.14}
\end{align*}
$$

Radius of inertia of a cube is $i=d x / \sqrt{6}$ giving:

$$
\begin{equation*}
I=m i^{2}=\rho d x^{3} \cdot \frac{1}{6} d x^{2}=\rho \frac{1}{6} d x^{5} \tag{2.15}
\end{equation*}
$$

Substitution of the equations (2.14) and (2.15) into equation (2.13) followed by a division by $d x^{3}$ gives:
$\frac{1}{2}\left(\sigma_{23}+\left(\sigma_{23}-\frac{\partial \sigma_{23}}{\partial x_{2}} d x\right)\right)-\frac{1}{2}\left(\sigma_{32}+\left(\sigma_{32}-\frac{\partial \sigma_{32}}{\partial x_{3}} d x\right)\right)=\rho \frac{1}{6} d x^{2} \ddot{\theta}$
Letting $d x \rightarrow 0$ gives:

$$
\frac{1}{2}\left(\sigma_{23}+\sigma_{23}\right)-\frac{1}{2}\left(\sigma_{32}+\sigma_{32}\right) \rightarrow 0
$$

unless $\ddot{\theta} \rightarrow \infty$, but this is not possible from a physical point of view. We therefore end up with

$$
\sigma_{23}=\sigma_{32}
$$

Considering the motions about the $x_{2^{-}}$and $x_{3^{-}}$axis, respectively, we similarly obtain:

$$
\sigma_{13}=\sigma_{31} \quad \text { and } \quad \sigma_{12}=\sigma_{21}
$$

From these three expressions of the shear stresses, we see that the stress tensor in a fluid is symmetric.

From calculus it is known that the stress field corresponding to a symmetric stress tensor has 3 principal stress directions with principal stress values here denoted $\sigma_{I}, \sigma_{I I}$ and $\sigma_{I I I}$. It is also known that the trace of the stress tensor is invariant to a coordinate transformation, i.e.

$$
\begin{equation*}
\sigma_{i i}=\sigma_{11}+\sigma_{22}+\sigma_{33}=\sigma_{I}+\sigma_{I I}+\sigma_{I I I}=\mathrm{constant} \tag{2.17}
\end{equation*}
$$

Finally the symmetry yields that the expression for the stress vector acting on a surface, equation (2.14), may be rewritten as:

$$
\sigma_{i}^{N}=n_{j} \sigma_{j i}=n_{j} \sigma_{i j}
$$

or

$$
\begin{equation*}
\sigma_{i}^{N}=\sigma_{i j} n_{j} \tag{2.18}
\end{equation*}
$$

### 2.1.1 Stresses in a Resting Fluid

Per definition, the shear stresses in a resting fluid are zero. Consequently the stress vector on a plane is perpendicular to the plane despite the direction of the normal to the plane, i.e. all directions are principal directions and all planes are principal planes. This causes the size of normal stress at a point to be independent of the direction of the normal to the plane, which is shown by considering the fluid body depicted in Fig. 2.3.


Figure 2.3: Definition sketch, stresses on a fluid body in a resting fluid.

As the considered body is at rest, the equations of motion are reduced to equilibrium equations.

Vertical equilibrium:

$$
\sigma \frac{d x}{\cos \alpha} \cos \alpha=\sigma_{22} d x+\rho g \frac{1}{2} d x^{2} \tan \alpha
$$

After division by $d x$, the expression for the stress on the inclined plane reads:

$$
\sigma=\sigma_{22}+\rho g \frac{1}{2} d x \tan \alpha
$$

Letting $d x \rightarrow 0$, while keeping $\alpha$ constant (less than $90^{\circ}$ ) gives:

$$
\sigma=\sigma_{22}
$$

Horizontal equilibrium:

$$
\sigma \frac{d x}{\cos \alpha} \sin \alpha=\sigma_{11} d x \tan \alpha
$$

or

$$
\sigma=\sigma_{11}
$$

Similarly, turning of the body $90^{\circ}$ about a vertical axis gives:

$$
\sigma=\sigma_{33}
$$

Therefore, the normal stress at a point is the same on all planes through the point, and the expression for the stress tensor at a point reads:

$$
\begin{equation*}
\sigma_{i j}=\sigma \delta_{i j} \tag{2.19}
\end{equation*}
$$

where $\delta_{i j}$ is Kronecker's tensor.

### 2.1.2 Stresses in a Moving Fluid

In general the shear stresses in a moving fluid are not zero, but normally they are very small compared to the normal stresses.

## Example : Stresses in Couette-flow



Figure 2.4: Definition sketch, Couette-flow.

We consider the plane flow between two horizontal, parallel plates, see
Fig.2.4. The upper plate is forced to move at the constant velocity $v_{o}$. If we assume that

$$
\begin{equation*}
\frac{\partial \sigma_{11}}{\partial x_{1}}=0 \tag{2.20}
\end{equation*}
$$

the flow is therefore solely driven by the motion of the upper plate. Due to the parallel plates the flow is uniform, and due to the constant velocity of the upper plate, the flow is also steady. The velocity field may be expressed as:

$$
v_{i}=\left(v_{1}\left(x_{2}\right), 0\right)
$$

Consequently, the acceleration of a fluid particle is zero in the $x_{1}$ - and the $x_{2}$-direction, and the horizontal component of Newton's 2nd law for the fluid particle reads:

$$
0=\frac{\partial \sigma_{21}}{\partial x_{2}} d x_{2} \cdot d x_{1}+\frac{\partial \sigma_{11}}{\partial x_{1}} d x_{1} \cdot d x_{2}
$$

Substitution of equation (2.20) and division by $d x_{1} \cdot d x_{2}$ gives:

$$
\frac{\partial \sigma_{21}}{\partial x_{2}}=0
$$

or

$$
\sigma_{21}=K\left(x_{1}\right)
$$

However, $K$ cannot depend on $x_{1}$ in a uniform flow, and $\sigma_{21}$ is therefore constant. As the stress tensor has to be symmetric, we find:

$$
\begin{equation*}
\sigma_{21}=\sigma_{12}=K \tag{2.21}
\end{equation*}
$$

at all points in the flow region.
The velocity field is calculated by adoption of Newton's formula. This gives

$$
\sigma_{21}=\mu \frac{\partial v_{1}}{\partial x_{2}}=\mu \frac{d v_{1}}{d x_{2}} \quad\left(\text { as } v_{1} \text { only depends on } x_{2}\right)
$$

After substitution of equation (2.21) this expression reads:

$$
\mu \frac{d v_{1}}{d x_{2}}=K
$$

which after integration gives:

$$
v_{1}=\frac{K}{\mu} x_{2}+K_{1}
$$

i.e. the velocity profile is a straight line. Due to adhesion between the fluid and the plates, the boundary conditions read:

$$
\begin{array}{llll}
v_{1}=0 & \text { for } & x_{2}=0 \\
v_{1}=v_{o} & \text { for } & x_{2}=a
\end{array}
$$

The first boundary condition gives $K_{1}=0$ and the second leads to $K=$ $\mu v_{o} / a$. Therefore, the expression for the velocity profile reads:

$$
v_{1}=\frac{v_{0}}{a} x_{2}
$$

This flow is called a Couette-flow, and it should be noticed that results obtained from considering this flow are important, when it comes to setting up the constitutive equations for a fluid.

### 2.2 Equations of Motion

The equations of motion for a fluid body are set up by a summation of Newton's 2nd law for all the fluid particles, which make up the body considered. As all forces between the particles, two and two, are equal and opposite, the resultant force on the body only consists of body forces on the volume of the body, $X$, and forces acting on the surface of the body, $A$.


Figure 2.5: Definition sketch, equations of motion.

The body forces (defined as force per unit mass) considered in fluid dynamics are normally gravity forces, inertial forces $\left(-\frac{d \vec{v}}{d t}\right)$ and the Coriolis force. Inclusion of the latter is only necessary, if we want to describe the motion in a coordinate system fixed to the Earth, i.e. a non-inertial system rotating with the angular velocity of the Earth, $\vec{\Omega}$.

In general the expression for the body force, $\vec{b}=b_{i}$, reads:

$$
\begin{equation*}
\vec{b}=\vec{g}-\frac{d \vec{v}}{d t}-2 \vec{\Omega} \times \vec{v} \tag{2.22}
\end{equation*}
$$

Notice that the horizontal component of the Coriolis force can also be expressed as

$$
\begin{equation*}
2 \Omega \sin (l a t) \hat{\vec{v}} \tag{2.23}
\end{equation*}
$$

where lat is the latitude of the position and $\hat{\vec{v}}$ is $\vec{v}$ rotated $90^{\circ}$ clockwise. On the northern hemisphere $($ lat $>0)$ the Coriolis force is thus orientated to the right, if one looks in the direction of motion. Normally, the Coriolis force is unimportant as $\Omega=(2 \pi) /(24 \cdot 60 \cdot 60)=7.27 \cdot 10^{-5}$, but for flows with a large time scale or for flows, where the horizontal components of the other forces are small (flows in the atmosphere), it is necessary to include the Coriolis force.

Inclusion of the inertia forces into the body force makes it possible to interpret Newton's 2nd law as an equilibrium equation. For the body depicted in Fig. 2.5 this equation reads:

$$
\begin{equation*}
\int_{A} \sigma_{i}^{N} d A+\int_{X} b_{i} \rho d X=0 \quad, \quad i=1,2,3 \tag{2.24}
\end{equation*}
$$

where $\sigma_{i}^{N}=\vec{\sigma}^{N}$ is the stress vector on $d A$ and $\vec{n}=n_{i}$ is defined as the outward, unit normal to the plane. The general expression for the stress vector reads:

$$
\begin{equation*}
\sigma_{i}^{N}=\sigma_{i j} n_{j} \tag{2.25}
\end{equation*}
$$

giving this $x_{1}$-component:

$$
\sigma_{1}^{N}=\sigma_{1 j} n_{j}=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13}
\end{array}\right]\left[\begin{array}{l}
n_{1} \\
n_{2} \\
n_{3}
\end{array}\right]=\vec{\sigma}^{1} \cdot \vec{n}
$$

Hereby the $x_{1}$-component of the surface integral in equation (2.24) can be written:

$$
\begin{aligned}
\int_{A} \sigma_{1}^{N} d A & =\int_{A} \vec{\sigma}^{1} \cdot \vec{n} d A \\
& =\int_{X} \operatorname{div}\left(\tilde{\sigma}^{1}\right) \mathrm{dX} \\
& =\int_{X} \frac{\partial \sigma_{j}^{1}}{\partial x_{j}} d X=\int_{X} \frac{\partial \sigma_{1 j}}{\partial x_{j}} d X
\end{aligned}
$$

after adoption of Gauss's divergence theorem and $\sigma_{1 j}=\sigma_{j}^{1}$. Similar equations are valid for the two other components of the surface integral in equation (2.24), and in general we get

$$
\int_{A} \sigma_{i}^{N} d A=\int_{X} \frac{\partial \sigma_{i j}}{\partial x_{j}} d X \quad, i=1,2,3
$$

Substitution of this expression into equation (2.24) gives:

$$
\begin{equation*}
\int_{X}\left(\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho b_{i}\right) d X=0 \quad, i=1,2,3 \tag{2.26}
\end{equation*}
$$

Equation (2.26) is seen to be satisfied for an arbitrary volume $X$ if

$$
\begin{equation*}
\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho b_{i}=0 \tag{2.27}
\end{equation*}
$$

which is the general equation of motion for a fluid. This equation is identical with the equilibrium equation for a solid, but even though stresses are described by equation (2.25) in both fluid and solids, the cause of stresses is different for the two types of substance. Also remember also that inertia force and Coriolis's force are "hidden" in the body force for a fluid. If only gravity force and inertia force are taken into account in the body force, we get:

$$
b_{i}=g_{i}-\frac{d v_{i}}{d t}
$$

and the equation of motion reads:

$$
\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho\left(g_{i}-\frac{d v_{i}}{d t}\right)=0
$$

or

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho g_{i} \tag{2.28}
\end{equation*}
$$

It is clearly seen that in order to calculate the velocity field a relation between $\sigma_{i j}$ and $v_{i}$ is necessary, i.e. a so-called constitutive equation for the fluid has to be established.

### 2.3 Constitutive Equation for a Newtonian Fluid

In order to establish the constitutive equation for a fluid we attempt to generalize the knowledge obtained from the description of some simple flows as e.g. resting fluid, pure translation, rotation of the fluid as a rigid body and the Couetteflow.

Simple static/dynamic considerations for the first three cases show that shear stresses are absent in these flows. It is also clear that in these three cases, the deformation tensor is zero, $e_{i j}=0$.

On the other hand, it was seen that for the Couette-flow $e_{i j}$ was constant in the entire flow domain, and $\sigma_{i j}$ was also constant, but only for $i \neq j$. The motions corresponding to $e_{i j}$ of a originally square body are shown in Fig. 2.6, and next to it the shear stresses on the same body are shown.


Figure 2.6: Deformations and shear stresses in Couette-flow.

As the shear stresses tend to deform the body in the way actually done by $e_{i j}$, it is obvious to consider constitutive equations of the type:

$$
\begin{equation*}
\sigma_{i j}=f\left(e_{i j}\right) \tag{2.29}
\end{equation*}
$$

where so far the function $f$ is unknown.
This equation cannot, however, describe the conditions correctly in a resting fluid, where the stress state is isentropic

$$
\sigma_{i j}=\left[\begin{array}{ccc}
\sigma & 0 & 0  \tag{2.30}\\
0 & \sigma & 0 \\
0 & 0 & \sigma
\end{array}\right]=\sigma \delta_{i j}
$$

and all velocity gradients are zero giving:

$$
e_{i j}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Instead of $\sigma_{i j}$ we consider the tensor $\sigma_{i j}^{d}$, which describes the deviations from the isentropic stress state, i.e.

$$
\begin{equation*}
\sigma_{i j}=\bar{\sigma} \delta_{i j}+\sigma_{i j}^{d} \tag{2.31}
\end{equation*}
$$

or

$$
\sigma_{i j}^{d}=\sigma_{i j}-\bar{\sigma} \delta_{i j}=\left[\begin{array}{ccc}
\sigma_{11}-\bar{\sigma} & \sigma_{12} & \sigma_{13}  \tag{2.32}\\
\sigma_{21} & \sigma_{22}-\bar{\sigma} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}-\bar{\sigma}
\end{array}\right]
$$

where $\bar{\sigma}$ is defined as

$$
\begin{equation*}
\bar{\sigma}=\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \tag{2.33}
\end{equation*}
$$

This definition is adopted, as the sum of the elements in the diagonal of $\sigma_{i j}$ does not depend on the actual coordinate system. In this way the definition of $\bar{\sigma}$ is unique at all points.
In a resting fluid without shear stresses we have $\sigma_{i j}^{d}=0$, and this fact makes it possible to relate $\sigma_{i j}^{d}$ and $e_{i j}$.

In order to keep things simple we first consider the simple, linear equation:

$$
\begin{equation*}
\sigma_{i j}^{d}=C \cdot e_{i j} \tag{2.34}
\end{equation*}
$$

where $C$ is a constant.
Written fully expanded, equation (2.34) reads:

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\sigma_{11}-\bar{\sigma} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22}-\bar{\sigma} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}-\bar{\sigma}
\end{array}\right]} \\
=C \cdot\left[\begin{array}{ccc}
\frac{\partial v_{1}}{\partial x_{1}} & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right) & \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{1}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{2}}\right) & \frac{\partial v_{2}}{\partial x_{2}} & \frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{3}}+\frac{\partial v_{3}}{\partial x_{2}}\right) \\
\frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{3}}\right) & \frac{1}{2}\left(\frac{\partial v_{3}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{3}}\right) & \frac{\partial v_{3}}{\partial x_{3}}
\end{array}\right]
\end{gathered}
$$

However, the constitutive equation (2.34) considered is still only a hypothesis, and at least it has to be shown that adoption of the hypothesis gives correct results for the four simple flows. Otherwise the hypothesis must be rejected.

The requirements to be fulfilled are:

1) a symmetrical stress tensor, i.e. $\sigma_{i j}=\sigma_{j i}$
2) Newton's formula for Couette-flow, i.e. $\sigma_{21}=\mu \frac{\partial v_{1}}{\partial x_{2}}$
3) $\sigma_{i j}=0$ in a resting flow for $i \neq j$ and $\sigma_{11}=\sigma_{22}=\sigma_{33}$

As shown below the hypothesis $\sigma_{i j}^{d}=C e_{i j}$ fulfills these requirements:
ad 1) As $e_{i j}=e_{j i}$, equation (2.34) directly gives $\sigma_{i j}^{d}=\sigma_{j i}^{d}$. According to equation (2.31) this gives $\sigma_{i j}=\sigma_{j i}$. The stress tensor is therefore symmetrical.
ad 2) In a Couette-flow with $v_{i}=\left(2 k x_{2}, 0,0\right)$ we have

$$
e_{21}=\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{2}}\right)=\frac{1}{2} \frac{\partial v_{1}}{\partial x_{2}}
$$

Substitution into equation (2.34) gives:

$$
\sigma_{21}^{d}=C \frac{1}{2} \frac{\partial v_{1}}{\partial x_{2}}
$$

However, according to equation (2.32) we have $\sigma_{21}^{d}=\sigma_{21}$, giving:

$$
\sigma_{21}=C \frac{1}{2} \frac{\partial v_{1}}{\partial x_{2}}
$$

So far $C$ is an arbitrary constant, but with $C=2 \mu$ it is seen that the stress predicted by the hypothesis is actually the same as Newton's formula.
ad 3) In a resting fluid we have $e_{i j}=0$, and according to equation (2.34), we get $\sigma_{i j}^{d}=0$. From equation (2.32) is seen that $\sigma_{i j}=\bar{\sigma} \delta_{i j}$ and therefore $\sigma_{i j}=0$ for $i \neq j$. Furthermore we see that $\sigma_{11}=\sigma_{22}=\sigma_{33}$ in a resting fluid.

Consequently, we can accept the hypothesis with $C=2 \mu$, which gives:

$$
\begin{equation*}
\sigma_{i j}^{d}=2 \mu e_{i j} \tag{2.35}
\end{equation*}
$$

After substitution of this expression into equation (2.31) the constitutive equation reads:

$$
\begin{equation*}
\sigma_{i j}=\bar{\sigma} \delta_{i j}+2 \mu e_{i j} \tag{2.36}
\end{equation*}
$$

Notice that equation (2.36) is still a hypothesis and should only be finally accepted, if it also gives satisfactory predictions for flows in general. However, this is actually the case for many fluids as e.g. water, air and oil. All fluids having this linear relation between the stress and the deformation tensor are called newtonian fluids.

On the other hand, many fluids do not have a linear relation between the stress and the deformation tensor. Typical examples are honey, asphalt, sludge from a sewage disposal plant and non-drip paint, but the description of such fluids is beyond the framework of this book.

Equation (2.36) shows that in a moving newtonian fluid the normal stresses depend on the orientation of the normal to the plane, but in practice the deviations from an isotropic stress state are insignificant. The $x_{1}$-component of equation (2.36) reads:

$$
\sigma_{11}=\bar{\sigma}+2 \mu \frac{1}{2}\left(\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{1}}{\partial x_{1}}\right)=\bar{\sigma}+2 \mu \frac{\partial v_{1}}{\partial x_{1}}
$$

Generally shear stresses are small compared to normal stresses in a fluid, i.e.

$$
\sigma_{21}=\mu \frac{\partial v_{1}}{\partial x_{2}} \ll \bar{\sigma}
$$

If the main flow direction coincides with the $x_{1}$-axis, we have

$$
\frac{\partial v_{1}}{\partial x_{1}} \ll \frac{\partial v_{1}}{\partial x_{2}}
$$

Therefore,

$$
2 \mu \frac{\partial v_{1}}{\partial x_{1}} \ll \bar{\sigma}
$$

and it is normally assumed that

$$
\sigma_{11} \approx \bar{\sigma}
$$

In a uniform flow directed along the $x_{1}$-axis we have $\frac{\partial v_{1}}{\partial x_{1}}=0$ and consequently $\sigma_{11}=\bar{\sigma}$.

Similarly we find:

$$
\sigma_{22}=\bar{\sigma}+2 \mu \frac{\partial v_{2}}{\partial x_{2}} \approx \bar{\sigma}
$$

and

$$
\sigma_{33}=\bar{\sigma}+2 \mu \frac{\partial v_{3}}{\partial x_{3}} \approx \bar{\sigma}
$$

Due to the fact that a fluid cannot withstand tension stresses (if the pressure is lower than the saturated vapour pressure, the fluid boils instead), it is practical to adopt the following unique definition of pressure, denoted $p$, in a moving fluid:

$$
\begin{equation*}
p=-\bar{\sigma}=-\frac{1}{3}\left(\sigma_{11}+\sigma_{22}+\sigma_{33}\right) \tag{2.37}
\end{equation*}
$$

With this definition $p$ is always positive, and the corresponding stress state, $-p \delta_{i j}$, is isentropic, just like the stress state in a resting fluid. In practice it is only necessary to include $-p \delta_{i j}$ at the calculation of normal forces on a plane in a moving fluid.

Substitution of equation (2.37) into equation (2.36) leads to the final version of the constitutive equation for a newtonian fluid:

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+2 \mu e_{i j} \tag{2.38}
\end{equation*}
$$

### 2.4 Navier-Stokes' Equation

Based on the equation of motion

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=\rho g_{i}+\frac{\partial \sigma_{i j}}{\partial x_{j}} \tag{2.39}
\end{equation*}
$$

and the constitutive equation for a newtonian fluid

$$
\begin{equation*}
\sigma_{i j}=-p \delta_{i j}+2 \mu e_{i j} \tag{2.40}
\end{equation*}
$$

it is possible to set up equations for a direct calculation of the velocity field of a newtonian fluid.

Derivation of the constitutive equation with respect to $x_{j}$ gives this resultant of the surface forces on a particle:

$$
\begin{align*}
\frac{\partial \sigma_{i j}}{\partial x_{j}} & =\frac{\partial\left(-p \delta_{i j}+2 \mu e_{i j}\right)}{\partial x_{j}} \\
& =-\frac{\partial p}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{2.41}
\end{align*}
$$

Substitution of this expression into the equation of motion (2.39) gives

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=\rho g_{i}-\frac{\partial p}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{2.42}
\end{equation*}
$$

which is called the Navier-Stokes equation.
In this version of the equation the last term is zero due to the assumption of an incompressible fluid. Consequently we can rewrite the Navier-Stokes equation to:

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=\rho g_{i}-\frac{\partial p}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}} \tag{2.43}
\end{equation*}
$$

This equation is always valid for flows of a newtonian fluid, but normally it is adopted only for laminar flows. In most cases of turbulent flows a direct numerical solution of the equation is too costly, because very small vortices have to be resolved in the calculation. Instead a kind of "smoothed" version of the equation is solved. In this solution the dynamic effect (exchange of momentum) of the small vortices is taken into account by use of a so-called turbulence model. See chapter 7 .

The left-hand side of equation (2.42) might be interpreted as mass times acceleration of a particle having the volume one unit $\left(\mathrm{m}^{3}\right)$, and the right-hand side is therefore the sum of the external forces on this volume.

The first term on the right-hand side is the gravity force and the second term is the resulting force from pressure $p$ on the volume (see appendix A). The last term on the right-hand side is therefore the resultant of the so-called viscous stresses, which comprise both normal stresses and shear stresses. Normally the resultant viscous normal stress is insignificant compared to the resulting force from pressure.

The pressure distribution in a resting fluid is called hydrostatic pressure distribution, and this pressure is denoted $p_{h y d}$. It is easily determined from the Navier-Stokes equation, which for a resting fluid reads:

$$
\begin{equation*}
0=\rho g_{i}-\frac{\partial p_{h y d}}{\partial x_{i}} \tag{2.44}
\end{equation*}
$$

As $g_{i}$ has a vertical component only, $p_{\text {hyd }}$ has to be constant on horizontal planes, and therefore only varies in the vertical direction. If $z$ denotes a vertical coordinate (positive in the upward direction), we find by integration of equation (2.44) that in a resting fluid the expression for pressure reads:

$$
\begin{equation*}
p_{h y d}=-\rho g z+C \tag{2.45}
\end{equation*}
$$

where $C$ is a constant.
As $p_{\text {hyd }}$ does not create any motion of the fluid, only the part of $p$ deviating from $p_{h y d}$ is considered in many cases. This deviation in pressure is called either excess pressure or dynamic pressure. In these notes it is denoted $p^{+}$, but many books use the notation $p_{d}$. Thus, the definition equation for $p^{+}$reads:

$$
\begin{equation*}
p=p_{h y d}+p^{+} \tag{2.46}
\end{equation*}
$$

Substitution of equation (2.45) gives

$$
\begin{equation*}
p^{+}=p+\rho g z-C \tag{2.47}
\end{equation*}
$$

The expression for the pressure gradient can therefore be rewritten to:

$$
\begin{align*}
\frac{\partial p}{\partial x_{i}} & =\frac{\partial p_{h y d}}{\partial x_{i}}+\frac{\partial p^{+}}{\partial x_{i}} \\
& =\rho g_{i}+\frac{\partial p^{+}}{\partial x_{i}} \tag{2.48}
\end{align*}
$$

by substitution of equation (2.44). After substitution of equation (2.48) into equation (2.42) we have this alternative version of the Navier-Stokes equation:

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=-\frac{\partial p^{+}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{2.49}
\end{equation*}
$$

For an incompressible fluid this version of Navier-Stokes equation can be rewritten to:

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=-\frac{\partial p^{+}}{\partial x_{i}}+\mu \frac{\partial^{2} v_{i}}{\partial x_{j} \partial x_{j}} \tag{2.50}
\end{equation*}
$$

At first glance all versions of the Navier-Stokes equation look rather simple, but they are in fact nonlinear. The expression for acceleration reads:

$$
\frac{d v_{i}}{d t}=\frac{\partial v_{i}}{\partial t}+\frac{\partial v_{i}}{\partial x_{j}} \cdot v_{j}
$$

where the last term corresponding to convective acceleration is nonlinear! This prevents an analytical solution except for the very few flows, where the convective term is zero, i.e. when the flow is uniform.

In case of laminar flow the Navier-Stokes equation can be solved numerically in practice, but considerable computer power is necessary.

In the following some examples of analytical solution of Navier-Stokes equations are considered.

Example 1: Poiseuille-flow
A steady flow between 2 plane parallel plates with mutual distance $a$ and slope $\beta$ is considered, see Fig. 2.7.


Figure 2.7: Definition sketch, Poiseuille-flow.

The flow is driven by a pressure gradient in the $x_{1}$-direction, i.e. $\partial p^{+} / \partial x_{1}<$ 0 , and this gradient is so small that the flow remains laminar. The flow is two-dimensional and because the parallel plates give parallel streamlines the flow is also uniform. The only non-zero velocity component is therefore $v_{1}$.
The pressure distribution across the flow is calculated by the $x_{2}$-component of the Navier-Stokes equation:

$$
\begin{equation*}
\rho \frac{d v_{2}}{d t}=-\frac{\partial p^{+}}{\partial x_{2}}+\mu\left(\frac{\partial^{2} v_{2}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{2}}{\partial x_{2}^{2}}\right) \tag{2.51}
\end{equation*}
$$

As $v_{2}=0$ everywhere, equation (2.51) reduces to

$$
\frac{\partial p^{+}}{\partial x_{2}}=0
$$

Thus, in sections perpendicular to the streamlines, where $x_{1}=$ constant, we get:

$$
p^{+}=K\left(x_{1}\right)
$$

If this expression is substituted into $p=p_{\text {hyd }}+p^{+}=-\rho g z+p^{+}$, we find:

$$
\begin{equation*}
p=-\rho g z+K\left(x_{1}\right)=-\rho g x_{2} \cos \beta+K\left(x_{1}\right) \tag{2.52}
\end{equation*}
$$

i.e. the pressure distribution is linear, and it only deviates from the pressure distribution in a resting fluid by the constant factor $\cos \beta$. Despite this factor we also call this distribution a hydrostatic pressure distribution. Also, notice that equation (2.52) is valid for all flows, where the streamlines are straight and parallel at the section considered.
The variation (or profile) of $v_{1}$ is calculated by the $x_{1}$-component of the Navier-Stokes equation, which reads:

$$
\rho \frac{d v_{1}}{d t}=-\frac{\partial p^{+}}{\partial x_{1}}+\mu\left(\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}\right)
$$

Substitution of the rate of change for $v_{1}$ gives:

$$
\rho\left[\frac{\partial v_{1}}{\partial t}+v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}\right]=-\frac{\partial p^{+}}{\partial x_{1}}+\mu\left(\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}\right)
$$

Due to uniform flow we have

$$
\frac{\partial v_{1}}{\partial x_{1}}=0 \quad \text { og } \quad \frac{\partial^{2} v_{1}}{\partial x_{1}^{2}}=0
$$

and due to steady flow we have

$$
\frac{\partial v_{1}}{\partial t}=0
$$



Figure 2.8: Velocity profile in Poiseuille-flow.

As also $v_{2}=0$, the left-hand side of the Navier-Stokes equation is zero, i.e. the acceleration is zero. This gives:

$$
\mu \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}=\frac{\partial p^{+}}{\partial x_{1}}
$$

This partial differential equation can be changed to an ordinary differential equation, because $v_{1}=v_{1}\left(x_{2}\right)$ and the pressure gradient is constant. The Navier-Stokes equation now reads:

$$
\mu \frac{d^{2} v_{1}}{d x_{2}^{2}}=\frac{\partial p^{+}}{\partial x_{1}}
$$

Integration twice gives:

$$
v_{1}=\frac{1}{2 \mu} \frac{\partial p^{+}}{\partial x_{1}} x_{2}^{2}+C_{1} x_{2}+C_{2}
$$

The constants $C_{1}$ and $C_{2}$ are determined by adoption of the boundary conditions:

$$
\begin{aligned}
v_{1}=0 \text { for } x_{2}=0 \quad \Rightarrow \quad C_{2}=0 \\
v_{1}=0 \text { for } x_{2}=a \quad \Rightarrow \quad C_{1}=-\frac{1}{2 \mu} \frac{\partial p^{+}}{\partial x_{1}} a
\end{aligned}
$$

After substitution of $C_{1}$ and $C_{2}$, the expression for $v_{1}$ reads:

$$
v_{1}=\frac{1}{2 \mu} \frac{\partial p^{+}}{\partial x_{1}}\left(x_{2}^{2}-a x_{2}\right)
$$

or

$$
v_{1}=\frac{1}{2 \mu} \frac{\partial p^{+}}{\partial x_{1}}\left(x_{2}-a\right) x_{2}
$$

The velocity profile in the slot is therefore parabolic as seen in Fig. 2.8.

## Example 2: unsteady flow above an oscillating plate

We consider a flow caused by a plate oscillating in its own plane at the velocity:

$$
\begin{equation*}
v_{1}=v_{o} \cos \left(\frac{2 \pi}{T} t\right)=v_{o} \cos (\omega t) \tag{2.53}
\end{equation*}
$$

Here $T$ is the period and $\omega=2 \pi / T$ is the cyclic frequency.
As the motions of the plate in its own plane are unable to produce any pressure gradients in the $x_{1}$-direction, we have $\partial p^{+} / \partial x_{1}=0$. It is also evident that $\partial v_{1} / \partial x_{1}=0$ and $v_{2}=0$, i.e. the flow is uniform. Therefore, the $x_{1}$-component of the the Navier-Stokes equation reads:

$$
\begin{equation*}
\rho \frac{\partial v_{1}}{\partial t}=\mu \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}} \tag{2.54}
\end{equation*}
$$



Figure 2.9: Definition sketch and velocity profile at $t=0$.

As the motion of the plate is periodic with time, the fluid at an arbitrary distance from the plate also has to move periodically with time with period $T$, but a lag in the phase will be present. At the plate the fluid and the plate will move together due to adhesion, and it is expected that the motions of the fluid will decrease with increasing distance to the plate. In principle the fluid velocity can be expressed as:

$$
\begin{equation*}
v_{1}\left(x_{2}, t\right)=v_{o} f\left(x_{2}\right) \cos \left(\omega t-\theta\left(x_{2}\right)\right) \tag{2.55}
\end{equation*}
$$

The solution to equation (2.54) reads:

$$
\begin{equation*}
v_{1}\left(x_{2}, t\right)=v_{o} e^{-\frac{x_{2}}{\delta}} \cos \left(\omega t-\frac{x_{2}}{\delta}\right) \tag{2.56}
\end{equation*}
$$

where

$$
\delta=\sqrt{\frac{2 \nu}{\omega}}
$$

The solution is built correctly according to equation (2.55), but it is left to the reader to show that it fulfills both equation (2.54) and the boundary conditions. The variable $\delta$ is often called the Stokes distance, and it is seen to be a measure of how far away the motions of the plate can be felt. As $\nu \approx 1.00 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$ for pure water at $20^{\circ} \mathrm{C}$, a period of $T=5$ seconds gives $\delta=1.3 \mathrm{~mm}$, i.e. a very small quantity.
In Fig. 2.9 the velocity profile at $t=n \cdot 2 \pi / T(n=0,1,2 \ldots)$ is shown.

### 2.4.1 Vorticity Transport Equation

A two-dimensional flow of an incompressible fluid is considered. Adoption of the operator:

$$
\begin{equation*}
\nabla^{2}()=\frac{\partial^{2}()}{\partial x_{1}^{2}}+\frac{\partial^{2}()}{\partial x_{2}^{2}} \tag{2.57}
\end{equation*}
$$

makes it possible to write the Navier-Stokes equation in the more compact form:

$$
\begin{align*}
& \rho \frac{d v_{1}}{d t}=-\frac{\partial p^{+}}{\partial x_{1}}+\mu \nabla^{2} v_{1}  \tag{2.58}\\
& \rho \frac{d v_{2}}{d t}=-\frac{\partial p^{+}}{\partial x_{2}}+\mu \nabla^{2} v_{2} \tag{2.59}
\end{align*}
$$

If equation (2.58) is derived with respect to $x_{2}$ and equation (2.59) is derived with respect to $x_{1}$, both equations contain the term:

$$
-\frac{\partial^{2} p^{+}}{\partial x_{1} \partial x_{2}}
$$

This term disappears, if equation (2.59) is subtracted from equation (2.58). The result reads:

$$
\begin{equation*}
\rho \frac{\partial}{\partial x_{2}}\left(\frac{d v_{1}}{d t}\right)-\rho \frac{\partial}{\partial x_{1}}\left(\frac{d v_{2}}{d t}\right)=\mu \frac{\partial}{\partial x_{2}}\left(\nabla^{2} v_{1}\right)-\mu \frac{\partial}{\partial x_{1}}\left(\nabla^{2} v_{2}\right) \tag{2.60}
\end{equation*}
$$

After substitution of the operator for the rate of change:

$$
\begin{equation*}
\frac{d()}{d t}=\frac{\partial()}{\partial t}+v_{1} \frac{\partial()}{\partial x_{1}}+v_{2} \frac{\partial()}{\partial x_{2}} \tag{2.61}
\end{equation*}
$$

and the $\nabla^{2}$-operator, equation (2.60) reads:

$$
\begin{gather*}
\frac{\partial}{\partial x_{2}}\left(\frac{\partial v_{1}}{\partial t}+v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}\right)-\frac{\partial}{\partial x_{1}}\left(\frac{\partial v_{2}}{\partial t}+v_{1} \frac{\partial v_{2}}{\partial x_{1}}+v_{2} \frac{\partial v_{2}}{\partial x_{2}}\right) \\
 \tag{2.62}\\
=\frac{\mu}{\rho}\left[\frac{\partial}{\partial x_{2}}\left(\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}\right)-\frac{\partial}{\partial x_{1}}\left(\frac{\partial^{2} v_{2}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{2}}{\partial x_{2}^{2}}\right)\right]
\end{gather*}
$$

This equation is rewritten to:

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\frac{\partial v_{1}}{\partial x_{2}}-\right. & \left.\frac{\partial v_{2}}{\partial x_{1}}\right)+v_{1} \frac{\partial}{\partial x_{1}}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right)+v_{2} \frac{\partial}{\partial x_{2}}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right) \\
& +\frac{\partial v_{1}}{\partial x_{2}}\left(\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}\right)-\frac{\partial v_{2}}{\partial x_{1}}\left(\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}\right) \\
= & \nu\left[\frac{\partial^{2}}{\partial x_{1}^{2}}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right)+\frac{\partial^{2}}{\partial x_{2}^{2}}\left(\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}\right)\right] \tag{2.63}
\end{align*}
$$

Substitution of the continuity equation

$$
\begin{equation*}
\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}=0 \tag{2.64}
\end{equation*}
$$

and

$$
\frac{\partial v_{1}}{\partial x_{2}}-\frac{\partial v_{2}}{\partial x_{1}}=-(\operatorname{rot} \vec{v})_{3}
$$

gives:

$$
\begin{equation*}
\frac{\partial(\operatorname{rot} \vec{v})_{3}}{\partial t}+v_{1} \frac{\partial(\operatorname{rot} \vec{v})_{3}}{\partial x_{1}}+v_{2} \frac{\partial(\operatorname{rot} \vec{v})_{3}}{\partial x_{2}}=\nu\left(\frac{\partial^{2}(\operatorname{rot} \vec{v})_{3}}{\partial x_{1}^{2}}+\frac{\partial^{2}(\operatorname{rot} \vec{v})_{3}}{\partial x_{2}^{2}}\right) \tag{2.65}
\end{equation*}
$$

Use of the operator for the rate of change and the $\nabla^{2}$-operator finally gives:

$$
\begin{equation*}
\frac{d(\operatorname{rot} \vec{v})_{3}}{d t}=\nu \nabla^{2}(\operatorname{rot} \vec{v})_{3} \tag{2.66}
\end{equation*}
$$

This equation is called the vorticity transport equation for a two-dimensional flow, because the equation describes how rot $\vec{v}$ is dispersed in a two-dimensional flow. This is shown by the following example.

Example: Dispersion of a dissolved substance in a two-dimensional flow
The dispersion of a dissolved substance is considered. Concentration of the dissolved substance may be stated in many different ways, but here concentration is defined as kg of dissolved substance per $\mathrm{m}^{3}$ of the mixture of fluid and substance, and it is denoted $c\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$. By means of continuity considerations it is possible to derive an equation that describes the dispersion of the substance. First of all it should be noted that the dispersion of a substance is caused by two different transport mechanisms: diffusion and convection.
We consider a resting fluid, where the concentration profile at a given moment is depicted in Fig. 2.10. If the flux of substance through a section


Figure 2.10: Definition sketch, diffusion.
perpendicular to the $x_{1}$-axis is denoted $F_{1}$, experiments show that the expression for this flux reads:

$$
F_{1}=-D \frac{\partial c}{\partial x_{1}} \quad\left[\mathrm{~kg} / \mathrm{s} / \mathrm{m}^{2}\right]
$$

where $D$ is called the diffusion coefficient or the diffusivity $\left[\mathrm{m}^{2} / \mathrm{s}\right]$. This equation is called Fick's 1st law. Notice that this spreading of substance is caused by the heat-dependent motions of the molecules, and it will always create a net transport away from the domains with most molecules of the substance. In the following this spreading mechanism is called diffusion. It is seen that omitting the description of the motions of the individual molecules make it necessary to introduce a mechanism (diffusion), which has the same effect as the details omitted. We have seen this earlier, where it was necessary to introduce shear stresses, because the individual motions of the molecules were omitted.

Hereafter we consider convection, which is the transport of dissolved substance caused by the motion of the fluid particles. The volume flux of the mixture due to the velocity $v_{1} \neq 0$ is $v_{1} \cdot 1\left[\mathrm{~m}^{3} / \mathrm{s} / \mathrm{m}^{2}\right]$ through a section perpendicular to the $x_{1}$-axis, and the flux of substance is therefore $c v_{1}\left[\mathrm{~kg} / \mathrm{s} / \mathrm{m}^{2}\right]$.

The expression for the total flux of substance (diffusion and convection) reads:

$$
F_{1}=-D \frac{\partial c}{\partial x_{1}}+v_{1} c
$$

In a similar way we get in the $x_{2}$-direction:

$$
F_{2}=-D \frac{\partial c}{\partial x_{2}}+v_{2} c
$$

If the control surface shown in Fig. 2.11 is considered, the resulting flux of dissolved substance inwards is equal to the increase in substance stored


Figure 2.11: Flux of dissolved substance through a control surface.
within the control surface. This can be expressed as:
$\frac{\partial c}{\partial t} d x_{1} d x_{2}=F_{1} d x_{2}-\left(F_{1}+\frac{\partial F_{1}}{\partial x_{1}} d x_{1}\right) d x_{2}+F_{2} d x_{1}-\left(F_{2}+\frac{\partial F_{2}}{\partial x_{2}} d x_{2}\right) d x_{1}$
or

$$
\frac{\partial c}{\partial t} d x_{1} d x_{2}=-\frac{\partial F_{1}}{\partial x_{1}} d x_{1} d x_{2}-\frac{\partial F_{2}}{\partial x_{2}} d x_{2} d x_{1}
$$

Division by $d_{1} d x_{2}$ gives:

$$
\frac{\partial c}{\partial t}+\frac{\partial F_{1}}{\partial x_{1}}+\frac{\partial F_{2}}{\partial x_{2}}=0
$$

Substitution of the expressions for $F_{1}$ og $F_{2}$ gives:

$$
\frac{\partial c}{\partial t}-D \frac{\partial^{2} c}{\partial x_{1}^{2}}+\frac{\partial\left(v_{1} c\right)}{\partial x_{1}}-D \frac{\partial^{2} c}{\partial x_{2}^{2}}+\frac{\partial\left(v_{2} c\right)}{\partial x_{2}}=0
$$

After derivation of the products and substitution of the continuity equation (2.64), we get this equation:

$$
\frac{\partial c}{\partial t}+v_{1} \frac{\partial c}{\partial x_{1}}+v_{2} \frac{\partial c}{\partial x_{2}}=D\left(\frac{\partial^{2} c}{\partial x_{1}^{2}}+\frac{\partial^{2} c}{\partial x_{2}^{2}}\right)
$$

The left-hand side is seen to be the rate of change of $c$ that is observed by following a particle, and the equation can be re-written to:

$$
\begin{equation*}
\frac{d c}{d t}=D \nabla^{2} c \tag{2.67}
\end{equation*}
$$

Now we can interpret the vorticity transport equation (2.66) by comparing it to equation (2.67). It is seen that the two equations are identically
set up, and it can be concluded that the vorticity $(\operatorname{rot} \vec{v})_{3}$ is dispersed in the fluid by convection and by diffusion with the diffusion coefficient $\nu\left[\mathrm{m}^{2} / \mathrm{s}\right]$. In practice all vorticity is created near solid boundaries. It is therefore possible to get an impression of the dispersion of the vorticity, if one imagines how dye, discharged at the boundaries, will disperse in the actual flow. This is a useful tool, when we want to decide whether a certain domain of the flow is irrotational or not.

### 2.5 Dissipation

The macroscopic (organized) kinetic energy of fluid particles is constantly transformed into (unorganized) kinetic energy at molecular level in a flow. This transformation corresponds to an increasing temperature of the fluid, and is normally called dissipation.

As it is impossible to transform the unorganized molecular motions back into organized motions of particles, the transformation to unorganized motions is often called loss of mechanical energy, where mechanical energy is defined as the sum of kinetic and potential energy of fluid particles. It is seen that the concept of dissipation has to be introduced, because we have assumed the fluid to be a continuum.

The actual dissipation can be determined, if we first calculate the amount of work produced by all forces acting on the particle, and from this work subtract the increase of the kinetic energy of the particle.

We consider a body of fluid having the volume $X$ bounded by the closed surface $A$, see Fig. 2.5. The work produced by the external forces during the time $d t$ is given by:

$$
\begin{equation*}
A_{\text {external }}=\int_{X} v_{i} d t\left(\rho g_{i}\right) d X+\int_{A} v_{i} d t \sigma_{i}^{N} d A \tag{2.68}
\end{equation*}
$$

Substitution of $\sigma_{i}^{N}=\sigma_{i j} n_{j}$, and use of the divergence theorem on the vector field $l_{j}=v_{i} \sigma_{i j}$ gives:

$$
\begin{equation*}
A_{\text {external }}=\left(\int_{X} v_{i}\left(\rho g_{i}\right) d X+\int_{X} \frac{\partial\left(v_{i} \sigma_{i j}\right)}{\partial x_{j}} d X\right) d t \tag{2.69}
\end{equation*}
$$

Per unit volume of the fluid the work of the external forces is:

$$
\begin{align*}
a_{\text {external }} & =\frac{A_{\text {external }}}{X} \\
& =\left(v_{i} \rho g_{i}+\frac{\partial\left(v_{i} \sigma_{i j}\right)}{\partial x_{j}}\right) d t \\
& =\left(v_{i} \rho g_{i}+v_{i} \frac{\partial \sigma_{i j}}{\partial x_{j}}+\sigma_{i j} \frac{\partial v_{i}}{\partial x_{j}}\right) d t \tag{2.70}
\end{align*}
$$

Substitution of the equation of flow derived in section 2.2

$$
\begin{equation*}
\frac{\partial \sigma_{i j}}{\partial x_{j}}+\rho\left(g_{i}-\frac{d v_{i}}{d t}\right)=0 \tag{2.71}
\end{equation*}
$$

gives

$$
\begin{align*}
a_{\text {external }} & =\left(v_{i} \rho g_{i}-v_{i} \rho\left(g_{i}-\frac{d v_{i}}{d t}\right)+\sigma_{i j} \frac{\partial v_{i}}{\partial x_{j}}\right) d t \\
& =\rho v_{i} d v_{i}+\sigma_{i j} \frac{\partial v_{i}}{\partial x_{j}} d t \\
& =d\left(\frac{1}{2} \rho v^{2}\right)+\sigma_{i j} \frac{\partial v_{i}}{\partial x_{j}} d t \tag{2.72}
\end{align*}
$$

If the constitutive equation (2.38)

$$
\sigma_{i j}=-p \delta_{i j}+2 \mu e_{i j}
$$

is substituted, we get:

$$
\begin{equation*}
a_{\text {external }}=d\left(\frac{1}{2} \rho v^{2}\right)-p \delta_{i j} \frac{\partial v_{i}}{\partial x_{j}} d t+\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \frac{\partial v_{i}}{\partial x_{j}} d t \tag{2.73}
\end{equation*}
$$

However, for an incompressible fluid the middle term is zero as:

$$
\delta_{i j} \frac{\partial v_{i}}{\partial x_{j}}=\frac{\partial v_{j}}{\partial x_{j}}=0
$$

Thus equation (2.73) can be written as:

$$
\begin{equation*}
a_{\text {external }}=d\left(\frac{1}{2} \rho v^{2}\right)+\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \frac{\partial v_{i}}{\partial x_{j}} d t \tag{2.74}
\end{equation*}
$$

The first term is seen to be the increase of the kinetic energy (per unit volume) during the time $d t$, and the second term is therefore the dissipation per unit volume, i.e. the part of the work, which is transformed into kinetic energy at molecular level (heat).

In many cases the dissipation per unit mass per unit time is considered, and it is normally denoted $\epsilon$. It is found by division of equation (2.74) by $\rho d t$ giving

$$
\begin{equation*}
\epsilon=\nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \frac{\partial v_{i}}{\partial x_{j}} \tag{2.75}
\end{equation*}
$$

As

$$
\begin{align*}
\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)^{2} & =\frac{\partial v_{i}}{\partial x_{j}} \cdot \frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}} \cdot \frac{\partial v_{j}}{\partial x_{i}}+2 \frac{\partial v_{i}}{\partial x_{j}} \cdot \frac{\partial v_{j}}{\partial x_{i}} \\
& =2\left(\frac{\partial v_{i}}{\partial x_{j}}\right)^{2}+2 \frac{\partial v_{i}}{\partial x_{j}} \cdot \frac{\partial v_{j}}{\partial x_{i}} \tag{2.76}
\end{align*}
$$

equation (2.75) can be rewritten to:

$$
\begin{equation*}
\epsilon=\frac{1}{2} \nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)^{2}>0 \tag{2.77}
\end{equation*}
$$

Thus the dissipation is always positive, i.e. mechanical energy is constantly transformed into heat at all points having a non-zero velocity gradient.

## Chapter 3

## Ideal Fluids

### 3.1 Basic assumptions

In most flows the shear stresses are very small compared to the normal stresses. Is is therefore natural to omit the shear stresses in the description of a flow. This is obtained by the assumption

$$
\nu=0
$$

which e.g. yields:

$$
\sigma_{21}=\rho \nu\left(\frac{\partial v_{1}}{\partial x_{2}}+\frac{\partial v_{2}}{\partial x_{1}}\right)=0
$$

but notice that shear stresses and viscous normal stresses all become zero. Furthermore, if we assume that the fluid is incompressible, the fluid is called an ideal fluid.

The theory for ideal fluids gives excellent results in many cases, but in general the small shear stresses play a decisive role in the course of the flow, e.g. on the look of the streamlines.

The Navier-Stokes equation for an ideal fluid $(\nu=0)$ reads:

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=-\frac{\partial p^{+}}{\partial x_{i}} \tag{3.1}
\end{equation*}
$$

This equation is often called Euler's equation. It is easy to derive it using Newton's 2nd law as shear stresses are missing. Equation (3.1) simply states that for an ideal fluid the particle acceleration is solely caused by gradients in the dynamic pressure, $p^{+}$, i.e. the part of the pressure deviating from the
hydrostatic pressure, $p_{\text {hyd }}$. As

$$
p=p_{h y d}+p^{+}
$$

and

$$
p_{h y d}=-\rho g z+C
$$

where $z$ denotes a vertical coordinate (positive in the upward direction) and $C$ is a constant, we have:

$$
p^{+}=p+\rho g z-C
$$

As only gradients of $p^{+}$are able to create motion, the constant $C$ is neglected in the following. After substitution of the expression for $p^{+}$into equation (3.1) and subsequent division by $\gamma=\rho g$ on both sides of the equation, Euler's equation is rewritten to:

$$
\begin{equation*}
\frac{1}{g} \frac{d v_{i}}{d t}+\frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.2}
\end{equation*}
$$

The component of this vector equation in the direction of $e_{i}=v_{i} / v$ reads:

$$
\begin{equation*}
\frac{1}{g} \frac{v_{i}}{v} \frac{d v_{i}}{d t}+\frac{v_{i}}{v} \frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.3}
\end{equation*}
$$

where $v_{i}$ is the velocity of the fluid particle.
As $v_{i}=d x_{i} / d t$, where $d x_{i}$ is a vector on the particle path, equation (3.3) can be rewritten to:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{v^{2}}{2 g}\right)+\frac{d x_{i}}{d t} \frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.4}
\end{equation*}
$$

Furthermore, if the flow is assumed to be steady, we have:

$$
d\left(z+\frac{p}{\gamma}\right)=\frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right) \cdot d x_{i}
$$

Substitution of this expression into equation (3.4) gives:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{v^{2}}{2 g}\right)+\frac{d}{d t}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d}{d t}\left(z+\frac{p}{\gamma}+\frac{v^{2}}{2 g}\right)=0 \tag{3.6}
\end{equation*}
$$

This equation states that the rate of change of the quantity within the parenthesis is zero if observed from a fluid particle. This corresponds to

$$
\begin{equation*}
z+\frac{p}{\gamma}+\frac{v^{2}}{2 g}=\text { constant } \quad \text { along a particle path } \tag{3.7}
\end{equation*}
$$

This is the famous Bernoulli equation. As particle paths and streamlines coincide in a steady flow, Bernoulli's equation is also valid along a streamline. Notice that the value of the constant normally varies from streamline to streamline.

Example: Steady flow under a sluice gate
In an open channel with horizontal bottom a sluice gate is placed. A sluice gate is a vertical plate under which the flow has to pass, see Fig. 3.1.


Figure 3.1: Flow under a sluice gate.

In front of the gate the free surface is elevated the distance $s$, see Fig. 3.1. At point $S$, where there is a break on the path line ( $=$ streamline), the particle velocity has to be zero. It is so, because a break at points, where the particle velocity is non-zero, would necessitate an infinitely large force according to Newton's 2nd law. The elevation of the surface at $S$ is calculated applying Bernoulli's equation to the streamline at the surface between $A$ and $S$ :

$$
z_{A}+\frac{p_{A}}{\gamma}+\frac{v_{A}^{2}}{2 g}=z_{S}+\frac{p_{S}}{\gamma}+\frac{v_{S}^{2}}{2 g}
$$

where the level $z$ has datum at the bottom of the channel.
Substitution of $v_{S}=0$ and $p_{A}=p_{S}=p_{a t m}$ yields:

$$
s=z_{S}-z_{A}=\frac{v_{A}^{2}}{2 g}
$$

Thus, the increase in surface level is due to a transformation of the kinetic energy of the fluid particle at $A$ into the extra potential energy of the particle, when the particle arrives to $S$.

A more general equation can be derived from Euler's equation if the flow is irrotational flow, i.e. the velocity field fulfils:

$$
\begin{align*}
\operatorname{rot} \vec{v} & =\overrightarrow{0} \\
\frac{\partial v_{i}}{\partial x_{j}} & =\frac{\partial v_{j}}{\partial x_{i}} \tag{3.8}
\end{align*} \Leftrightarrow
$$

In such a flow the velocities are given by

$$
\begin{equation*}
v_{i}=\frac{\partial \varphi}{\partial x_{i}} \tag{3.9}
\end{equation*}
$$

where $\varphi$ is the velocity potential. First the substantial rate of change of $v_{i}$ is substituted into Euler's equation:

$$
\begin{equation*}
\frac{1}{g} \frac{d v_{i}}{d t}+\frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.10}
\end{equation*}
$$

yielding:

$$
\begin{equation*}
\frac{1}{g}\left(\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}\right)+\frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.11}
\end{equation*}
$$

After substitution of equation (3.9) and equation (3.8) the equation reads:

$$
\begin{equation*}
\frac{1}{g} \frac{\partial}{\partial t}\left(\frac{\partial \varphi}{\partial x_{i}}\right)+\frac{1}{g} v_{j} \frac{\partial v_{j}}{\partial x_{i}}+\frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.12}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{g} \frac{\partial}{\partial x_{i}}\left(\frac{\partial \varphi}{\partial t}\right)+\frac{1}{g} \frac{\partial}{\partial x_{i}}\left(\frac{1}{2} v_{j} v_{j}\right)+\frac{\partial}{\partial x_{i}}\left(z+\frac{p}{\gamma}\right)=0 \tag{3.13}
\end{equation*}
$$

which is rewritten to:

$$
\begin{equation*}
\frac{\partial}{\partial x_{i}}\left(\frac{1}{g} \frac{\partial \varphi}{\partial t}+\frac{v^{2}}{2 g}+z+\frac{p}{\gamma}\right)=0 \tag{3.14}
\end{equation*}
$$

As the gradient of the quantity in the parenthesis is zero everywhere in the flow, this quantity has to be constant in the entire flow domain at a given time, i.e.

$$
\begin{equation*}
z+\frac{p}{\gamma}+\frac{v^{2}}{2 g}+\frac{1}{g} \frac{\partial \varphi}{\partial t}=C(t) \quad \text { everywhere in the flow } \tag{3.15}
\end{equation*}
$$

where $C(t)$ can only depend on the time. This equation is called Bernoulli's generalized equation. Substitution of $p^{+}=p+\gamma z$ gives this alternative version of Bernoulli's generalized equation:

$$
\begin{equation*}
\frac{p^{+}}{\gamma}+\frac{v^{2}}{2 g}+\frac{1}{g} \frac{\partial \varphi}{\partial t}=C(t) \tag{3.16}
\end{equation*}
$$

everywhere in the flow

Notice that it is not necessary to limit the application of this equation to a single streamline, but remember the condition of irrotational flow!

Bernoulli's generalized equation is widely adopted to calculate pressures and pressure forces for irrotational flows. First the pressure distribution on the surface of a body is calculated. Then the pressures on the body are integrated yielding the force from the fluid acting on the body.

### 3.2 Potential Flow

In this section we solely consider irrotational flows, i.e. flows where the condition $\operatorname{rot} \vec{v}=\overrightarrow{0}$ is fulfilled, and where the velocity field can consequently be calculated from a velocity potential $\varphi$. Therefore this type of flow is often called potential flow instead of irrotational flow. In general $\varphi$ fulfills the Laplace equation:

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{3}^{2}}=0 \tag{3.17}
\end{equation*}
$$

which for two-dimensional flows is reduced to

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{1}^{2}}+\frac{\partial^{2} \varphi}{\partial x_{2}^{2}}=0 \tag{3.18}
\end{equation*}
$$

The stream function for a two-dimensional flow fulfills equation (1.83), which is a Poisson equation. Because $(\operatorname{rot} \vec{v})_{3}=0$ in potential flow, equation (1.83) is reduced to a Laplace equation

$$
\begin{equation*}
\frac{\partial^{2} \psi}{\partial x_{1}^{2}}+\frac{\partial^{2} \psi}{\partial x_{2}^{2}}=0 \tag{3.19}
\end{equation*}
$$

For a potential flow both $\varphi$ and $\psi$ fulfill the Laplace equation, and because this equation is linear, the superposition principle is valid for potential flow.

If knowledge of $\varphi($ or $\psi)$ has been obtained for some basic potential flows, these potentials can be superposed to produce potentials corresponding to more complicated flows. It is always true that superposition of two potential flows gives a new potential flow, but it is not always possible to fulfill the physical boundary conditions with the velocities corresponding to the superposed potentials. In the following some examples of superposition of basic potential flows will be given.

In this connection it should be remembered that the boundary conditions at a wall are special for an ideal fluid. Due to the missing shear stresses we cannot demand that fluid and wall shall have the same velocity component along the wall. The only boundary condition left for an ideal fluid is therefore that fluid and wall shall have the same velocity component along the normal to the wall.

### 3.2.1 Line Source and Line Sink

We consider the two-dimensional flow around a line source with discharge $q$ per unit length along the line, see Fig. 3.2. Due to conservation of volume we have:

$$
q=2 \pi r \cdot 1 \cdot v_{r}
$$

or

$$
v_{r}=\frac{q}{2 \pi} \frac{1}{r}=\frac{k}{r}
$$

where $k=q /(2 \pi)>0$ is called the source strength. Due to symmetry we have $v_{\theta}=0$, and consequently the velocity field expressed in polar coordinates reads:

$$
\vec{v}=\left(v_{r}, v_{\theta}\right)=\left(\frac{k}{r}, 0\right)
$$

Expressed in polar coordinates the component of $\operatorname{rot} \vec{v}$ perpendicular to the flow


Figure 3.2: Velocity field at a line source.
plane reads:

$$
\begin{equation*}
(\operatorname{rot} \vec{v})_{3}=\frac{1}{r}\left(\frac{\partial\left(r v_{\theta}\right)}{\partial r}-\frac{\partial v_{r}}{\partial \theta}\right) \tag{3.20}
\end{equation*}
$$

and it is straightforward to see that $(\operatorname{rot} \vec{v})_{3}=0$ for this flow. Thus we find $\operatorname{rot} \vec{v}=\overrightarrow{0}$, as the two components in the flow plane are always zero for a twodimensional flow. Thus, the flow is a potential flow.

In order to calculate the potential for the source, we adopt the expression for a gradient, which expressed in polar coordinates reads:

$$
\begin{equation*}
\operatorname{grad} \varphi=\left(\frac{\partial \varphi}{\partial r}, \frac{1}{r} \frac{\partial \varphi}{\partial \theta}\right) \tag{3.21}
\end{equation*}
$$

giving

$$
v_{r}=\frac{\partial \varphi}{\partial r}=\frac{k}{r} \quad \Leftrightarrow \quad \varphi=k \ln r+f(\theta)+C
$$

where $C$ is a constant. Substitution of this expression for $\varphi$ into

$$
v_{\theta}=\frac{1}{r} \frac{\partial \varphi}{\partial \theta}=0
$$

gives

$$
0+\frac{f^{\prime}(\theta)}{d \theta}+0=0 \quad \Leftrightarrow \quad f(\theta)=C_{1}
$$

which substituted into the expression for $\varphi$ gives:

$$
\varphi=k \ln r+C_{2}
$$

As the gradient of a constant is zero, we can omit the constant $C_{2}$. Therefore, the potential for the flow around a line source is

$$
\begin{equation*}
\varphi_{\text {source }}=k \ln r \tag{3.22}
\end{equation*}
$$

As it was very easy to find the velocity field around a source expressed in polar coordinates, we shall also set up definition equations for the stream function expressed in polar coordinates.

In polar coordinates the expression for divergence reads:

$$
\begin{equation*}
\operatorname{div} \vec{v}=\frac{1}{r} \frac{\partial\left(r v_{r}\right)}{\partial r}+\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} \tag{3.23}
\end{equation*}
$$

By analogy with the definitions in Cartesian coordinates, we adopt these definitions in polar coordinates:

$$
\begin{gather*}
v_{r}=-\frac{1}{r} \frac{\partial \psi}{\partial \theta}  \tag{3.24}\\
v_{\theta}=\frac{\partial \psi}{\partial r} \tag{3.25}
\end{gather*}
$$

Substitution of equation (3.24) and equation (3.25) into equation (3.23), yields $\operatorname{div} \vec{v}=0$. Accordingly the continuity equation for an incompressible fluid is always fulfilled as wanted.

If equation (3.24) is used for the flow at the source one get:

$$
v_{r}=-\frac{1}{r} \frac{\partial \psi}{\partial \theta}=\frac{k}{r} \quad \Leftrightarrow \quad \psi=-k \theta+f(r)+C
$$

where $C$ is a constant. Substitution of this expression for $\psi$ into:

$$
v_{\theta}=\frac{\partial \psi}{\partial r}=0
$$

gives

$$
0+\frac{f(r)}{d r}+0=0 \quad \Leftrightarrow \quad f(r)=C_{1}
$$

Substitution of $f(r)$ into the expression for $\psi$ gives

$$
\psi=-k \theta+C_{2}
$$

As the gradient of a constant is zero, we can omit the constant $C_{2}$ and the expression for $\psi$ reads:

$$
\begin{equation*}
\psi_{\text {source }}=-k \theta \tag{3.26}
\end{equation*}
$$

Replacement of $q$ by $-q$ (where $q$ is a positive quantity) in the equations causes a sign shift of the velocity, i.e. the flow is still in a radial direction, but now towards the origin corresponding to a line sink.

### 3.2.2 Two-Dimensional Dipole Flow

A two-dimensional flow is produced by superposition of a line source with discharge $+q$ and a line sink with discharge $-q$. The sink is placed at $r=0$ and the source the distance $s$ to the right, see Fig. 3.3. Initially the velocity potential


Figure 3.3: Definition sketch, two-dimensional dipole flow.
and velocity are calculated at point $P$ placed at the distance $r$ from the sink and the distance $r_{1}$ from the source.

By superposition we get

$$
\begin{equation*}
\varphi=\varphi_{\text {source }}+\varphi_{\text {sink }}=+k \ln r_{1}-k \ln r \tag{3.27}
\end{equation*}
$$

where equation (3.22) has been adopted with positive source strength $+k$ at the source and with negative source strength $-k$ at the sink.

In the following we only consider the asymptotic expressions for $\varphi$ (and $\psi$ ), valid far from the sink and the drain, i.e. it is assumed that $r \gg s$, but equation (3.27) is of course valid everywhere. Seen from point $P$ the distance between the source and the sink looks very small, and the configuration is named a dipole.

From Fig. 3.3 it is seen that for $r \gg s$, we can approximate the distance from the source to $P$ by $r_{1} \approx r-s \cos \theta$. Substitution into equation (3.27) gives:

$$
\begin{align*}
\varphi_{\text {dipole }} & \approx+k \ln (r-s \cos \theta)-k \ln r \\
& =k \ln \left(\frac{r-s \cos \theta}{r}\right)  \tag{3.28}\\
& =k \ln \left(1-\frac{s}{r} \cos \theta\right) \approx k\left(-\frac{s}{r} \cos \theta\right)
\end{align*}
$$

where $\ln (1-\epsilon) \approx-\epsilon$ for $\epsilon \ll 1$ has been used.
Defining the strength of the dipole as

$$
\begin{equation*}
m=\frac{q s}{2 \pi}=k s \tag{3.29}
\end{equation*}
$$

i.e. $m>0$ is assumed, the equation for the potential around the dipole reads:

$$
\begin{equation*}
\varphi_{\text {dipole }}=-m \frac{\cos \theta}{r} \tag{3.30}
\end{equation*}
$$

The velocity components at point $P$ read:

$$
\begin{equation*}
v_{r}=\frac{\partial \varphi}{\partial r}=\frac{-1}{r^{2}}(-m \cos \theta)=m \frac{\cos \theta}{r^{2}} \tag{3.31}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{\theta}=\frac{1}{r} \frac{\partial \varphi}{\partial \theta}=\frac{1}{r}(-m) \frac{-\sin \theta}{r}=m \frac{\sin \theta}{r^{2}} \tag{3.32}
\end{equation*}
$$

The stream function for the dipole flow is calculated by superposition of the stream functions for a sink and a source, respectively. The general expression reads:

$$
\begin{equation*}
\psi=\psi_{\text {source }}+\psi_{\text {sink }}=-k \beta+k \theta=-k(\theta+\alpha)+k \theta=-k \alpha \tag{3.33}
\end{equation*}
$$

as $\beta=\theta+\alpha$.
For $r \gg s$ we approximate $\alpha$ by

$$
\alpha \approx \frac{s \sin \theta}{r-s \cos \theta}=\frac{s \sin \theta}{r\left(1-\frac{s}{r} \cos \theta\right)} \approx \frac{s \sin \theta}{r}
$$

which substituted into (3.33) gives this stream function for a dipole flow:

$$
\begin{equation*}
\psi_{\text {dipole }}=-m \frac{\sin \theta}{r} \tag{3.34}
\end{equation*}
$$

The course of the streamlines can be determined by solving the differential equation for a streamline, equation (1.15). However, in many cases it is much easier to make use of the convenient property: the stream function is constant on a streamline. The course of a streamline is therefore found by locating the curve, where $\psi=C$.

In the expression for $\psi$ we substitute:

$$
r=\sqrt{x_{1}^{2}+x_{2}^{2}} \quad \text { and } \quad \sin \theta=\frac{x_{2}}{r}=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}
$$

yielding:

$$
\psi=-m \frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}
$$

and this expression is rewritten to:

$$
\begin{align*}
\Rightarrow \quad x_{1}^{2}+x_{2}^{2}+\frac{m}{\psi} x_{2} & =0 \\
\Rightarrow \quad x_{1}^{2}+\left(x_{2}+\frac{m}{2 \psi}\right)^{2}-\left(\frac{m}{2 \psi}\right)^{2} & =0 \\
\Rightarrow \quad x_{1}^{2}+\left(x_{2}-\left(-\frac{m}{2 \psi}\right)\right)^{2} & =\left(\frac{m}{2 \psi}\right)^{2} \tag{3.35}
\end{align*}
$$

The course of the streamline with $\psi=C$ is then found by substituting $\psi=C$ into equation (3.35).

This yields:

$$
\begin{equation*}
x_{1}^{2}+\left(x_{2}-\left(-\frac{m}{2 C}\right)\right)^{2}=\left(\frac{m}{2 C}\right)^{2} \tag{3.36}
\end{equation*}
$$

i.e. the equation for a circle having the centre at

$$
\begin{equation*}
\left(x_{1}, x_{2}\right)=\left(0,-\frac{m}{2 C}\right) \tag{3.37}
\end{equation*}
$$

and radius

$$
\begin{equation*}
R=\left|\frac{m}{2 C}\right| \tag{3.38}
\end{equation*}
$$



Figure 3.4: Streamlines, two-dimensional dipole flow.
as the equation for a circle with centre at $(a, b)$ and radius $R$ reads:

$$
\left(x_{1}-a\right)^{2}+\left(x_{2}-b\right)^{2}=R^{2}
$$

If $C>0$, the streamline is placed under the $x_{1}$-axis, and $R$ is decreasing for $|C|$ increasing. The streamlines are sketched in Fig. 3.4. It is also seen that $\psi$ is increasing to the right at all positions on the $x_{2}$-axis, when looking into the direction of the flow.

### 3.2.3 Flow past a Circular Cylinder

A circular cylinder with radius $R$ is placed in a uniform flow with the velocity field: $v_{i}=\left(-v_{o}, 0\right)$, see Fig. 3.5.

We want to describe the flow by use of the stream function $\psi$, which must fulfill both the differential equation (the flow equation)

$$
\begin{equation*}
\nabla^{2} \psi=0 \tag{3.39}
\end{equation*}
$$

and the following two boundary conditions.
The first boundary condition can be expressed as:

$$
\begin{align*}
& v_{r}=0 \quad \text { for } \quad r=R \\
& \Leftrightarrow \quad \psi=0 \quad \text { for } \quad r=R \tag{3.40}
\end{align*}
$$

as the surface of the cylinder is a streamline. However, the value of the stream function on this boundary is arbitrarily chosen to be zero. Due to reasons of
symmetry the $x_{1}$-axis is a streamline. This streamline splits into two streamlines at the stagnation point $S$, where the velocity is zero.

The second boundary condition is

$$
\begin{equation*}
\left(v_{1}, v_{2}\right) \rightarrow\left(-v_{o}, 0\right) \text { for } r \rightarrow \infty \tag{3.41}
\end{equation*}
$$

corresponding to undisturbed flow far away from the cylinder.


Figure 3.5: Definition sketch. Two-dimensional flow around a cylinder.

The problem is to find out if the potential flow formed by superposition of a dipole flow ( 1 source +1 sink) and a uniform flow with velocity field $\left(v_{1}, v_{2}\right)=\left(-v_{o}, 0\right)$ fulfills the boundary conditions stated above.

First we notice that the velocity components around a dipole are:

$$
\begin{equation*}
\left(v_{r}, v_{\theta}\right)=\left(m \frac{\cos \theta}{r^{2}}, m \frac{\sin \theta}{r^{2}}\right) \rightarrow(0,0) \tag{3.42}
\end{equation*}
$$

for $r \rightarrow \infty$. Consequently the superposed velocity field approaches uniform flow far away from the cylinder. Therefore, the second boundary condition is fulfilled.

Superposition gives:

$$
\begin{align*}
\psi & =\psi_{\text {par }}+\psi_{\text {dipole }}=-\left(-v_{o}\right) x_{2}+\left(-m \frac{\sin \theta}{r}\right) \\
& =v_{o} r \sin \theta-m \frac{\sin \theta}{r} \\
& =v_{o} \frac{\sin \theta}{r}\left(r^{2}-\frac{m}{v_{o}}\right) \tag{3.43}
\end{align*}
$$

After substitution of $R_{*}$, defined as:

$$
\begin{equation*}
R_{*} \equiv \sqrt{\frac{m}{v_{o}}} \tag{3.44}
\end{equation*}
$$

the expression for the stream function reads:

$$
\begin{equation*}
\psi=v_{o} \frac{\sin \theta}{r}\left(r^{2}-R_{*}^{2}\right) \tag{3.45}
\end{equation*}
$$

For $r=R_{*}$ we have $\psi=0$, and the circle with radius $R_{*}$ is consequently a streamline. By scaling the dipole strength $m$, and hereby scaling of $R_{*}$, it is also possible to 'move' the streamline having $\psi=0$, until it coincides with the surface of the cylinder.

The demand $R_{*}=R$ is fulfilled if

$$
\sqrt{\frac{m}{v_{o}}}=R
$$

or

$$
\begin{equation*}
m=v_{o} R^{2} \tag{3.46}
\end{equation*}
$$

With this dipole strength both boundary conditions are fulfilled, and the corresponding stream function reads:

$$
\begin{equation*}
\psi=v_{o} \frac{\sin \theta}{r}\left(r^{2}-R^{2}\right) \quad \text { for } \quad r \geq R \tag{3.47}
\end{equation*}
$$

If the potential flow is symmetric with respect to both coordinate axes, so is the velocity distribution along the surface of the cylinder. The streamlines are depicted in Fig. 3.6.


Figure 3.6: Two-dimensional potential flow around a circular cylinder.
The pressure distribution on the cylinder surface is calculated by use of Bernoulli's equation along the streamline on the surface of the cylinder. This gives

$$
z+\frac{p}{\rho g}+\frac{v^{2}}{2 g}=C \quad \text { for } \quad r=R
$$

Substitution of the dynamic pressure, defined as the deviation from hydrostatic pressure, i.e.

$$
p^{+}=p+\rho g z
$$

where $z$ denotes a vertical coordinate (positive in the upward direction) gives:

$$
z+\frac{p^{+}-\rho g z}{\rho g}+\frac{v^{2}}{2 g}=C
$$

or

$$
\begin{equation*}
\frac{p^{+}}{\rho g}+\frac{v^{2}}{2 g}=C \tag{3.48}
\end{equation*}
$$

As $v^{2}$ is symmetric about both axes, Bernoulli's equation tells that also the distribution of $p^{+}$is symmetric about both axes.

Therefore, the resulting force from $p^{+}$is zero, which means that the potential flow does not create any pressure force on the cylinder.

This result is strikingly against all practical experience, and the reason for the misleading result simply is that the requirement for potential flow, $\operatorname{rot} \vec{v}=\overrightarrow{0}$, is not fulfilled everywhere.

Even though the uniform flow is irrotational, vorticity is evidently dispersed into the flow from the surface of the cylinder. In real fluids vorticity is constantly created at a wall due to the presence of the shear stresses, and although the shear stresses are very small, they are able to change the velocity profile near the wall significantly, see Fig. 3.7.


Figure 3.7: Velocity profiles near a wall in ideal and real fluid.

If the pressure $p^{+}$is increasing in the flow direction, the pressure force on fluid particles will create a negative acceleration. The particles closest to the wall have the lowest velocities, and consequently they will stop sooner than the particles farther away from the wall. This means that at some section the velocity profile has a tangent perpendicular to the wall, and in practice the flow is no longer following the wall. This phenomenon is called separation.


Figure 3.8: Flow of a real fluid around a circular cylinder.

In case of an un-separated flow the vorticity close to the wall is dispersed very slowly into the rest of the fluid domain, because the vorticity is transported by diffusion only. In separated flow the vorticity is normally dispersed very quickly into the fluid domain, as both diffusion and convection transport the vorticity.

As $p^{+}$is increasing in the flow direction on the rear side of the cylinder, separation takes place there, and a lot of vorticity is dispersed into the flow behind the cylinder. In this flow domain the potential theory is bound to produce false results, as we have solved the differential equation $\nabla^{2} \psi=0$, and we should have solved $\nabla^{2} \psi=(\operatorname{rot} \vec{v})_{3}$.

An example of the course of the real flow is depicted in Fig. 3.8, but notice that the course depends on the magnitude of the Reynolds number for the flow.

From this example one should not conclude that potential theory is useless. However, potential theory shall only be adopted for such parts of the flow, where the vorticity is confined in a rather thin layer close to the wall. In fact potential theory gives fine results for the upstream part of the flow around the cylinder!

### 3.2.4 Hydrodynamic Mass (Added Mass)

The concept of hydrodynamic mass is illustrated by the example given below.
Consider an air bubble with volume $X$, see Fig. 3.9. At the time $t=0$ the bubble starts to rise, i.e. the velocity of the bubble is $U=0$ and the acceleration $d U / d t \neq 0$.

The initial acceleration, $d U / d t$, is caused by the external forces on the bubble. In this case we have the gravity force, $F_{g}=\rho_{L} X g$, and the buoyancy, $F_{o}=\rho_{w} X g$, where $\rho_{L}$ is the air density and $\rho_{w}$ is the water density. Notice that buoyancy is defined as the resultant of the pressure forces on a body placed in a resting fluid, see Appendix A.


Figure 3.9: Forces on an air bubble at rest.

Newton's 2nd law reads:

$$
\begin{equation*}
\rho_{L} \cdot X \cdot \frac{d U}{d t}=\sum F=\rho_{w} X g-\rho_{L} X g=g X\left(\rho_{w}-\rho_{L}\right) \tag{3.49}
\end{equation*}
$$

and division by $\rho_{L} X$ gives:

$$
\begin{equation*}
\frac{d U}{d t}=\frac{g X\left(\rho_{w}-\rho_{L}\right)}{\rho_{L} X} \simeq g \frac{800 \rho_{L}-\rho_{L}}{\rho_{L}}=799 g!! \tag{3.50}
\end{equation*}
$$

This initial acceleration looks incredibly large, which is confirmed by measurements.

The reason for the miscalculation of $d U / d t$ is of course that it is impossible to accelerate the bubble without accelerating some water, and this fact has not been taken into account by the calculation.

The correct size of the force from the water $F$ acting on a body having the acceleration $d U / d t$ is found below. For simplicity it assumed that the flow around the body is a potential flow and that the fluid is ideal. In practice, they are excellent approximations until boundary layers are developed and separation occurs.

Due to the assumption of ideal fluid the force $\vec{F}_{p}$ is solely caused by pressure on the surface of the body. If the area vector $d \vec{A}$ is defined positive from water towards the body, the expression for $\vec{F}_{p}$ reads:

$$
\begin{equation*}
\vec{F}_{p}=\int_{A} p d \vec{A}=\int_{X}-\operatorname{grad} p d X \tag{3.51}
\end{equation*}
$$

according to gradient theorem, see Appendix A. Notice that a uniform pressure distribution ( $\Rightarrow \operatorname{grad} p=0$ ) does not create any resulting pressure force on the body. The total force component in the $\vec{U}$-direction can be expressed as:

$$
\begin{equation*}
F_{U}=\vec{F}_{p} \cdot \vec{e}_{U}=\int_{A} p d \vec{A} \cdot \vec{e}_{U} \tag{3.52}
\end{equation*}
$$

where $\vec{e}_{U}$ is a unit vector in the direction of the acceleration, see Fig. 3.10.


Figure 3.10: Definition sketch.

As we are interested only in the part of the force caused by the acceleration, it is necessary to subtract the buoyancy, $\vec{F}_{o}$, caused by the hydrostatic pressure, $p_{\text {hyd }}$.

The total pressure reads:

$$
\begin{equation*}
p=p_{h y d}+p^{+} \tag{3.53}
\end{equation*}
$$

where $p^{+}$is defined as the deviation from hydrostatic pressure, $p_{\text {hyd }}$.
Substitution of equation (3.53) into the expression for the total force gives:

$$
\begin{equation*}
\vec{F}_{p}=\int_{A}\left(p_{h y d}+p^{+}\right) d \vec{A}=\int_{A} p_{h y d} d \vec{A}+\int_{A} p^{+} d \vec{A}=\overrightarrow{F_{o}}+\overrightarrow{F_{p^{+}}} \tag{3.54}
\end{equation*}
$$

The force component in the $\vec{U}$-direction caused by acceleration therefore is:

$$
\begin{equation*}
F_{U}^{+}=\overrightarrow{F_{p^{+}}} \cdot \vec{e}_{U}=\int_{A} p^{+} d \vec{A} \cdot \vec{e}_{U} \tag{3.55}
\end{equation*}
$$

The distribution of $p^{+}$on the surface of the body is found by Bernoulli's generalized equation:

$$
\begin{equation*}
p^{+}+\frac{1}{2} \rho_{w} v^{2}+\rho_{w} \frac{\partial \varphi}{\partial t}=C(t) \tag{3.56}
\end{equation*}
$$

where $\vec{v}$ is the fluid particle velocity. The term $C(t)$ is constant in space, i.e. it does not contribute to the resulting pressure force, so it is assumed that $C(t)=0$ in the following. This gives:

$$
\begin{equation*}
p^{+}=-\rho_{w} \frac{\partial \varphi}{\partial t}-\frac{1}{2} \rho_{w} v^{2} \tag{3.57}
\end{equation*}
$$

Immediately after the start of the motion $v^{2} \simeq 0$ everywhere, and $p^{+}$can be


Figure 3.11: Definition sketch. Velocity potential around a moving body.
approximated by:

$$
\begin{equation*}
p^{+} \simeq-\rho_{w} \frac{\partial \varphi}{\partial t} \tag{3.58}
\end{equation*}
$$

It is now postulated that the velocity potential expressed in the $x_{1}^{*} x_{2}^{*} x_{3}^{*}$-system fixed to the body reads:

$$
\begin{equation*}
\varphi\left(x_{i}^{*}, t\right)=U(t) \varphi_{1}\left(x_{i}^{*}\right) \tag{3.59}
\end{equation*}
$$

where
$U(t)$ is the velocity of the body with respect to the $x_{1} x_{2} x_{3}$-system fixed in space $x_{i}^{*}$ is the position vector in the $x_{1}^{*} x_{2}^{*} x_{3}^{*}$-system fixed to the body
$\varphi_{1}$ is the potential around the body corresponding to $U=1$
and this expression is verified below for the flow around a moving circular cylinder.

As $\partial \varphi\left(x_{i}^{*}, t\right) / \partial t$ is the change in potential observed from a fixed position, i.e. for $x_{i}^{*}=$ constant, it is seen from the equations (3.58) and (3.59), that

$$
\begin{align*}
p^{+} & =-\rho_{w} \frac{\partial \varphi\left(x_{i}^{*}, t\right)}{\partial t} \\
& =-\rho_{w} \varphi_{1}\left(x_{i}^{*}\right) \frac{\partial U}{\partial t} \tag{3.60}
\end{align*}
$$

The velocity of the body is only depending on time, giving

$$
\frac{d U}{d t}=\frac{\partial U}{\partial t}
$$

and the acceleration of the body therefore creates the pressure:

$$
\begin{equation*}
p^{+}=-\rho_{w} \cdot \varphi_{1} \frac{d U}{d t} \tag{3.61}
\end{equation*}
$$

Substitution of this expression into equation (3.55) gives:

$$
F_{U}^{+}=-\int_{A} \rho_{w} \varphi_{1} \frac{d U}{d t} d \vec{A} \cdot \vec{e}_{U}
$$

or

$$
\begin{equation*}
F_{U}^{+}=-\left(\rho_{w} \int_{A} \varphi_{1} d \vec{A} \cdot \vec{e}_{U}\right) \frac{d U}{d t} \tag{3.62}
\end{equation*}
$$

Notice that the force from the fluid is directly proportional to the acceleration $d U / d t$.

Hereafter Newton's 2nd law reads:

$$
\begin{align*}
m \cdot \frac{d U}{d t} & =F_{\text {water }}+F_{g} \\
& =F_{o}+F_{U}^{+}+F_{g} \tag{3.63}
\end{align*}
$$

which is rewritten to:

$$
\begin{align*}
m \frac{d U}{d t}-F_{U}^{+} & =F_{o}+F_{g} \\
\left(m+\rho_{w} \int_{A} \varphi_{1} d \vec{A} \cdot \vec{e}_{U}\right) \frac{d U}{d t} & =F_{o}+F_{g} \\
\left(m+m^{\prime}\right) \frac{d U}{d t} & =F_{o}+F_{g} \tag{3.64}
\end{align*}
$$

where $m^{\prime}$ is called hydrodynamic mass (or added mass). From equation (3.64) is seen that

$$
\begin{equation*}
m^{\prime}=\rho_{w} \int_{A} \varphi_{1} d \vec{A} \cdot \vec{e}_{U} \tag{3.65}
\end{equation*}
$$

Sometimes it is possible to calculate $\varphi_{1}$ analytically, and subsequently calculate $m^{\prime}$ by equation (3.65). In general, however, $m^{\prime}$ is calculated numerically or by by use of model experiments.

The advantage of the introduction of hydrodynamic mass is of course that for a given body being accelerated in a given direction, we only need to calculate a
hydrodynamic mass once. Hereafter we can calculate the dynamic forces from the water by simply adding $m_{1}$ to the body mass in Newton's 2nd law, and the external forces from the water shall only comprise the known buoyancy.

## Example: hydrodynamic mass of a circular cylinder

Consider the potential flow around a cylinder moving in the direction of the $z$-axis (upwards) at the velocity $U$ in stagnant water. Due to the motion of the body a water volume is pushed from the upper side of the cylinder to the lower sider. This flow is very similar to the flow at a dipole having the source placed at $\left(\frac{s}{2}, 0\right)$ and the sink placed at $\left(-\frac{s}{2}, 0\right)$ in the $x_{1}^{*} x_{2}^{*}$-coordinate system, see Fig. 3.12.


Figure 3.12: Boundary conditions for the flow around a moving cylinder.
Is it possible to fulfill the boundary conditions for this flow simply by scaling the dipole strength to a suitable value? The answer is a bit surprising: "yes".

Expressed in the $x_{1}^{*} x_{2}^{*}$-system fixed to the cylinder, the velocity potential reads:

$$
\varphi_{\text {dipol }}=-m \frac{\cos \theta}{r}
$$

where $m$ is the dipole strength:

$$
m=\frac{q s}{2 \pi}
$$

The boundary conditions are:

1) no flow through the surface of the cylinder $\Leftrightarrow v_{r}=\left(v_{r}\right)_{c y l}=U \cos \theta$ for $r=a$
2) no fluid motion far away from the cylinder $\Leftrightarrow v \rightarrow 0$ for $r \rightarrow \infty$

Fulfillment of boundary condition 2 ) only requires that the dipole strength is limited.

As

$$
v_{r}=\frac{\partial \varphi_{\text {dipol }}}{\partial r}
$$

gives:

$$
v_{r}=-m\left(-\frac{1}{r^{2}}\right) \cos \theta=m \frac{1}{r^{2}} \cos \theta
$$

boundary condition 1 ) can be rewritten to:

$$
v_{r}=m \frac{1}{a^{2}} \cos \theta=U \cos \theta
$$

Boundary condition 1) is therefore fulfilled for all $\theta$, if $m=U a^{2}$.
Thus both boundary conditions are fulfilled by this dipole strength. The velocity potential expressed in the coordinate system fixed to the cylinder reads:

$$
\begin{equation*}
\varphi_{\text {dipol }}=-U a^{2} \frac{\cos \theta}{r} \tag{3.66}
\end{equation*}
$$

This expression has the form:

$$
\varphi=U(t) \varphi_{1}
$$

and the unit potential for the flow around a circular cylinder therefore reads:

$$
\begin{equation*}
\varphi_{1}=-a^{2} \frac{\cos \theta}{r} \tag{3.67}
\end{equation*}
$$

Notice that the flow is unsteady seen from a coordinate system fixed in space, when the dipole is moving, see Fig 3.13.


Figure 3.13: Streamlines seen from a coordinate system fixed in space.

Substitution of $\varphi_{1}=-a^{2}(\cos \theta / r)$ into the expression for $m^{\prime}$ gives:

$$
\begin{aligned}
m^{\prime} & =\rho_{w} \int_{A} \varphi_{1} d \vec{A} \cdot \vec{e}_{U} \\
& =\rho_{w} \int_{0}^{2 \pi}\left(-a^{2} \frac{\cos \theta}{a}\right)(-a d \theta \cdot \cos \theta) \\
& =\rho_{w} a^{2} \int_{0}^{2 \pi} \cos ^{2} d \theta \\
& =\rho_{w} a^{2}\left[\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right]_{0}^{2 \pi} \\
& =\rho_{w} a^{2} \cdot \pi
\end{aligned}
$$

or the hydrodynamic mass for a circular cylinder is equal to the displaced mass of fluid per unit length!
From this we can conclude that in order to produce the acceleration $d U / d t$ for a cylinder with diameter $D$, we need the force:

$$
F=\left(m+m^{\prime}\right) \frac{d U}{d t}=\left(m+\rho_{w} \frac{\pi}{4} D^{2}\right) \frac{d U}{d t} N / m
$$

After this example we shall return to the calculation of the initial acceleration of an air bubble.

For a sphere with volume $X$ it is in a similar way (by superposition of a point source and a point sink) found that $m^{\prime}=\frac{1}{2} \rho_{w} X$. Newton's 2nd law for the air bubble therefore reads:

$$
\begin{aligned}
\left(m+m^{\prime}\right) \frac{d U}{d t} & =\sum F \\
\left(\rho_{L} X+\frac{1}{2} \rho_{w} X\right) \frac{d U}{d t} & =\rho_{w} g X-\rho_{L} g X
\end{aligned}
$$

giving the initial acceleration:

$$
\begin{aligned}
\frac{d U}{d t} & =\frac{g X\left(\rho_{w}-\rho_{L}\right)}{X\left(\rho_{L}+\frac{1}{2} \rho_{w}\right)} \\
& \simeq g \cdot \frac{\rho_{w}}{\frac{1}{2} \rho_{w}} \\
& =2 g!
\end{aligned}
$$

This magnitude of the acceleration is confirmed by measurements, but it should be remembered that the basic assumptions are valid only a short time after the bubble is generated.

## Chapter 4

## Boundary Layers

In a real fluid adhesion causes the particle velocity at the wall and the velocity of a wall to be equal (often zero). If ideal fluid is assumed, only the components along the normal to the wall have to be equal, and calculations (potential theory or solution of Euler's equations) give different values of the tangential velocity component at the wall. However, measurements often show that the calculated velocities are in excellent agreement with velocities measured not far away from the wall. In a domain close to a wall the tangential velocity therefore increases from zero to the value calculated by the theory for an ideal fluid. See Fig. 4.1. This domain is called the boundary layer.

Based on this observation, Prandtl (1904) suggested that the flow domain should be divided into two sub domains:

1) the boundary layer, where the fluid is assumed to be real. The effects from shear stresses are taken into account, and the Navier-Stokes equation is used.
2) the domain outside the boundary layer, where the fluid is assumed to be ideal. In this domain the shear stresses are unimportant, and the flow can be approximated by potential flow.

This approach is not a guarantee for good results, but it has proven its capability in the following cases:

- flow immediately after a sudden start of the motion of a body
- the flow caused by relatively high frequent oscillations of a body, if the amplitude of the motion is small compared to a characteristic dimension of the body
- the flow around very slender bodies like e.g. wings of an aeroplane.


### 4.1 Flow Equations for Boundary Layers

Due to the assumption of real fluid in the boundary layer we must use NavierStokes equations. In order to keep things simple we consider a two-dimensional flow along a thin plate, where velocity profiles are observed as depicted in Fig. 4.1.


Figure 4.1: Definition sketch, boundary layer.

Notice that the thickness of the boundary layer is increasing down the plate, and that velocities and streamlines are approximately parallel to the plate, i.e. $v_{2} \ll v_{1}$.

The component of Navier-Stokes equation in the $x_{2}$-direction reads:

$$
\begin{equation*}
\rho \frac{d v_{2}}{d t}=-\frac{\partial p^{+}}{\partial x_{2}}+\mu\left(\frac{\partial^{2} v_{2}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{2}}{\partial x_{2}^{2}}\right) \tag{4.1}
\end{equation*}
$$

As $v_{2} \approx 0$ everywhere, equation (4.1) is reduced to

$$
\frac{\partial p^{+}}{\partial x_{2}} \approx 0
$$

This pressure distribution was also found in the flow between to parallel plates, and it is in fact always found in parts of a flow, where the streamlines locally are parallel.

In a section perpendicular to the streamlines we have approximately:

$$
\begin{equation*}
p^{+}=K\left(x_{1}\right) \tag{4.2}
\end{equation*}
$$

Thus, in the boundary layer the dynamic pressure is controlled by the dynamic pressure $p_{o}^{+}$in the potential flow just outside the boundary layer, as they are equal at the top of the boundary layer, i.e. $p^{+}=p_{o}^{+}$.

The Navier-Stokes equation in the flow direction reads:

$$
\begin{equation*}
\rho\left(\frac{\partial v_{1}}{\partial t}+v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}\right)=-\frac{\partial p^{+}}{\partial x_{1}}+\mu\left(\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}}+\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}\right) \tag{4.3}
\end{equation*}
$$

As the variations in velocity across the main flow direction are much larger than the variations in the flow direction, we have:

$$
\frac{\partial^{2} v_{1}}{\partial x_{1}^{2}} \ll \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}
$$

and the equation of motion is therefore reduced to:

$$
\begin{equation*}
\rho\left(\frac{\partial v_{1}}{\partial t}+v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}\right)=-\frac{\partial p^{+}}{\partial x_{1}}+\mu \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}} \tag{4.4}
\end{equation*}
$$

Notice that normally we cannot neglect the last term on the left-hand side of the equation. The component $v_{2}$ is indeed a very small quantity, but $\partial v_{1} / \partial x_{2}$ is on the other hand a very large quantity within the boundary layer. Finally it is seen that due to equation (4.2), the pressure gradient in equation (4.4) is equal to the gradient in the potential flow, and this gradient is calculated by adopting Bernoullis's equation. Equation (4.4) is often named the boundary layer equation.

In reality there is no well defined transition between boundary layer and potential flow as the influence of the shear stresses is gradually decreasing. It is therefore not possible to define the thickness of the boundary layer uniquely.

### 4.1.1 Boundary Layer on a Flat Plate in Uniform Flow

We consider the flow along a flat plate placed in a steady, uniform flow. In the potential flow Bernoulli's generalized equation reads:

$$
\begin{equation*}
\frac{p^{+}}{\gamma}+\frac{v^{2}}{2 g}=\text { constant } \quad \text { as } \quad \frac{\partial \varphi}{\partial t}=0 \tag{4.5}
\end{equation*}
$$

In the potential flow we have $v \simeq v_{o}=$ constant, and thus $p^{+}=$constant everywhere in the potential flow. According to equation (4.2) this means that $p^{+}=$constant everywhere in the boundary layer, and consequently we have $\partial p^{+} / \partial x_{1}=0$ in the boundary layer.

The boundary layer equation now reads:

$$
\begin{equation*}
v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}=\nu \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}} \tag{4.6}
\end{equation*}
$$

Notice that for continuity reasons $v_{2}$ is not zero, even though $v_{2} \ll v_{1}$. We need two equations to determine $v_{1}$ and $v_{2}$, and the second equation is the continuity equation:

$$
\begin{equation*}
\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}=0 \tag{4.7}
\end{equation*}
$$

The boundary conditions are:

$$
\begin{array}{rll}
x_{2}=0 & : & v_{1}=v_{2}=0 \\
x_{2} \rightarrow \infty & : & v_{1} \rightarrow v_{o}
\end{array}
$$

Measurements of velocity profiles along the plate show similar profiles, see Fig. 4.2. This was utilized in the solution presented by Blasius (1908).

In Fig. 4.2 the non-dimensional coordinate perpendicular to the flow direction reads:

$$
\begin{equation*}
y=\frac{x_{2}}{\sqrt{\frac{\nu x_{1}}{v_{o}}}} \tag{4.8}
\end{equation*}
$$

Similarity of the velocity profiles can be expressed by

$$
\begin{equation*}
\frac{v_{1}}{v_{o}}=f^{\prime}(y) \tag{4.9}
\end{equation*}
$$

where $f^{\prime}(y)$ is a function depending of $y$ only. The stream function can be expressed as

$$
\begin{equation*}
\psi=-\sqrt{\nu x_{1} v_{o}} \cdot f(y) \tag{4.10}
\end{equation*}
$$

and the correctness of expression is seen by substitution into the first definition equation for $\psi$, which gives:

$$
v_{1}=-\frac{\partial \psi}{\partial x_{2}}=\sqrt{\nu x_{1} v_{o}} \frac{\partial f}{\partial y} \frac{\partial y}{\partial x_{2}}=\sqrt{\nu x_{1} v_{o}} \frac{1}{\sqrt{\frac{\nu x_{1}}{v_{o}}}} \cdot f^{\prime}(y)=v_{o} \cdot f^{\prime}(y)
$$

Substitution into the second definition equation gives:

$$
\begin{equation*}
v_{2}=\frac{\partial \psi}{\partial x_{1}}=\frac{1}{2} \sqrt{\frac{\nu v_{o}}{x_{1}}}\left(y f^{\prime}(y)-f(y)\right) \tag{4.11}
\end{equation*}
$$

If these expressions for $v_{1}$ and $v_{2}$ are substituted into the boundary layer equation (4.6), it is possible to reduce this equation to the ordinary differential equation:

$$
\begin{equation*}
f f^{\prime \prime}+2 f^{\prime \prime \prime}=0 \tag{4.12}
\end{equation*}
$$

with the boundary conditions:

$$
\begin{array}{rll}
y=0 & : & f=f^{\prime}=0 \\
y \rightarrow \infty & : & f^{\prime} \rightarrow 1
\end{array}
$$

It is not possible to solve equation (4.12) analytically, but it is easy to get a numerical solution of the equation. The only problem is the boundary condition at infinite distance from the plate, but in practice excellent results are obtained if the boundary condition is fulfilled for $y \geq 8$. The boundary condition $f^{\prime}(8)=1$ has been used to calculate the velocity profile shown with a broken line in Fig. 4.2 .


Figure 4.2: Velocity profiles in air flow along a plate corresponding to $v_{o}=10$ $\mathrm{m} / \mathrm{s}$ and $\nu=15 \cdot 10^{-5} \mathrm{~m}^{2} / \mathrm{s}$.

In practice the thickness of the boundary layer is infinite, but based on Fig. 4.2 a visual assessment of the boundary layer thickness would be:

$$
\begin{equation*}
y=\frac{x_{2}}{\sqrt{\frac{\nu x_{1}}{v_{o}}}} \approx 5-6 \tag{4.13}
\end{equation*}
$$

From the numerical solution it is seen that $v_{1}=0.99 v_{o}$ for $y=4.9$ and $v_{1}=$ $0.999 v_{o}$ for $y=6.0$. It is therefore not evident how to define a thickness that is of practical use.

Often the so-called displacement thickness, $\delta^{*}$, is adopted as an objective measure for the boundary layer thickness. The basic idea is that the discharge corresponding to the actual profile in the boundary layer shall be equal to the discharge corresponding to an imaginary velocity profile with $v_{1}=0$ for $x_{2} \leq \delta^{*}$ and $v_{1}=v_{o}$ for $x_{2}>\delta^{*}$, see Fig. 4.3. This is expressed as:

$$
q=\int_{0}^{\infty} v_{1} d x_{2}=\int_{\delta^{*}}^{\infty} v_{o} d x_{2}=\int_{0}^{\infty} v_{o} d x_{2}-\int_{0}^{\delta^{*}} v_{o} d x_{2}
$$

or

$$
\int_{0}^{\infty} v_{1} d x_{2}=\int_{0}^{\infty} v_{o} d x_{2}-v_{o} \delta^{*}
$$

which gives:

$$
\begin{equation*}
\delta^{*}=\int_{0}^{\infty}\left(1-\frac{v_{1}}{v_{o}}\right) d x_{2} \tag{4.14}
\end{equation*}
$$



Figure 4.3: Imaginary velocity profile defining $\delta^{*}$.

The displacement thickness is therefore a measure of the distance that the potential flow has been displaced from the plate due to the velocity reduction in the boundary layer. Substitution of $v_{1} / v_{o}=f^{\prime}(y)$ into this expression gives:

$$
\delta^{*}=1.72 \sqrt{\frac{\nu x_{1}}{v_{o}}}
$$

This value is shown in Fig. 4.3.

### 4.2 The Momentum Equation

Sometimes it is easier to consider a fluid body of finite volume instead of fluid particle. Like in chapter 2.2 a fluid body with volume $X$ and surface area $A$ is considered, see Fig. 2.5, but this time the results are not rewritten to be valid for a fluid particle. Newton's 2nd law for the fluid body reads:

$$
\begin{equation*}
\int_{X} \rho d X \frac{d v_{i}}{d t}=\int_{X} \rho d X g_{i}+\int_{A} \sigma_{i}^{N} d A \quad, \quad i=1,2,3 \tag{4.15}
\end{equation*}
$$

where $\sigma_{i}^{N}=\vec{\sigma}^{N}$ is the stress vector on the area $d A$. This stress vector is equivalent to a normal force, $-p d A_{i}$, and a shear force, $\tau_{i} d A$, on $d A$, and
equation (4.15) can be rewritten to:

$$
\begin{equation*}
\int_{X} \rho d X \frac{d v_{i}}{d t}=\int_{X} \rho d X g_{i}-\int_{A} p d A_{i}+\int_{A} \tau_{i} d A \quad, \quad i=1,2,3 \tag{4.16}
\end{equation*}
$$

As the resultant of the hydrostatic pressure, $p_{h y d}$, on $A$ is equal to the gravity force on $X$, equation (4.16) can be reduced to:

$$
\begin{equation*}
\int_{X} \rho d X \frac{d v_{i}}{d t}=-\int_{A} p^{+} d A_{i}+\int_{A} \tau_{i} d A \quad, \quad i=1,2,3 \tag{4.17}
\end{equation*}
$$

where $p^{+}$is the deviation in pressure from hydrostatic pressure. Substitution of

$$
\begin{equation*}
\frac{d v_{i}}{d t}=\frac{\partial v_{i}}{\partial t}+\frac{\partial v_{i}}{\partial x_{k}} v_{k} \tag{4.18}
\end{equation*}
$$

gives

$$
\begin{equation*}
\int_{X} \rho d X\left[\frac{\partial v_{i}}{\partial t}+\frac{\partial v_{i}}{\partial x_{k}} v_{k}\right]=-\int_{A} p^{+} d A_{i}+\int_{A} \tau_{i} d A \quad, \quad i=1,2,3 \tag{4.19}
\end{equation*}
$$

The second term on the left-hand side is rewritten by use of the divergence theorem for the vector fields $v_{1} v_{k}, v_{2} v_{k}$ and $v_{3} v_{k}$ giving:

$$
\int_{A} v_{i} v_{k} d A_{k}=\int_{X} \frac{\partial\left(v_{i} v_{k}\right)}{\partial x_{k}} d X=\int_{X}\left[\frac{\partial v_{i}}{\partial x_{k}} v_{k}+v_{i} \frac{\partial v_{k}}{\partial x_{k}}\right] d X=\int_{X} \frac{\partial v_{i}}{\partial x_{k}} v_{k} d X
$$

for $i=1,2,3$, where $\partial v_{k} / \partial x_{k}=0$ due to the assumption of incompressible fluid. Hereafter equation (4.19) reads:

$$
\begin{equation*}
\int_{X} \rho \frac{\partial v_{i}}{\partial t} d X+\int_{A} \rho v_{i} v_{k} d A_{k}=-\int_{A} p^{+} d A_{i}+\int_{A} \tau_{i} d A \tag{4.20}
\end{equation*}
$$

This equation is called the general momentum equation. Notice that it is valid for any volume $X$ (called the control volume) of an incompressible fluid bounded by a closed surface $A$ (called the control surface). If the control surface cuts solid structures, the stresses on such sections should be included into the surface forces on the right-hand side of equation (4.20). Remember also that $d \vec{A}$ is defined positive in the outward direction.
Often equation (4.20) is written in vector notation giving:

$$
\begin{equation*}
\int_{X} \rho \frac{\partial \vec{v}}{\partial t} d X+\int_{A} \rho \vec{v}(\vec{v} \cdot d \vec{A})=-\int_{A} p^{+} d \vec{A}+\int_{A} \vec{\tau} d A \tag{4.21}
\end{equation*}
$$

### 4.3 Momentum Equation for Boundary Layers

The general momentum equation is now applied to a boundary layer on a flat plate. It is assumed that the the boundary layer has a finite thickness, $\delta$, even though the transition from boundary layer to potential flow is not well defined.

The control surface is depicted in Fig. 4.4, and it is extended by 1 m perpendicular to the flow plane.


Figure 4.4: Control surface for boundary layer flow.

Consider the $x_{1}$ component of the momentum equation. The 1 st term on the left-hand side (change of momentum within the control surface) reads:

$$
\int_{X} \rho \frac{\partial v_{1}}{\partial t} d X=d x_{1} \cdot 1 \int_{0}^{\delta} \rho \frac{\partial v_{1}}{\partial t} d x_{2}
$$

and the 2 nd term (change of momentum due to different inflow and outflow of momentum trough the control surface) reads:

$$
\int_{A} \rho v_{1}(\vec{v} \cdot d \vec{A})
$$

Here $\vec{v} \cdot d \vec{A}$ is the discharge (volume flux) through $d A$, and $\rho v_{1}(\vec{v} \cdot d \vec{A})$ is thus the momentum flux through $d A$. Before this integral is determined, it is practical to consider the fluxes of mass through the control surface. For an incompressible fluid we have:

$$
\begin{equation*}
M_{2}=M_{1}+M_{3} \tag{4.22}
\end{equation*}
$$

where $M_{1}, M_{2}$ and $M_{3}$ are shown in Fig. 4.4. The mass flux through the surface $a a^{\prime}$ is:

$$
M_{1}=\int_{0}^{\delta} \rho v_{1} d x_{2} \cdot 1
$$

and the mass flux through $b b^{\prime}$ can be expressed as:

$$
M_{2}=M_{1}+\frac{\partial M_{1}}{\partial x_{1}} d x_{1}=M_{1}+d x_{1} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1} d x_{2}
$$

After substitution of $M_{1}$ and $M_{2}$ into equation (4.22) the mass flux inwards through the top side of the boundary layer reads:

$$
\begin{equation*}
M_{3}=d x_{1} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1} d x_{2} \tag{4.23}
\end{equation*}
$$

According to the definition of mass flux we might also express $M_{3}$ as:

$$
\begin{equation*}
M_{3}=-\int_{a^{\prime}}^{b^{\prime}} \rho(\vec{v} \cdot d \vec{A}) \tag{4.24}
\end{equation*}
$$

and comparison of the two expressions for $M_{3}$ :

$$
\begin{equation*}
\int_{a^{\prime}}^{b^{\prime}} \rho(\vec{v} \cdot d \vec{A})=-d x_{1} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1} d x_{2} \tag{4.25}
\end{equation*}
$$

The next step is to find the momentum flux through the control surface. Through the surface $a a^{\prime}$ the flux reads:

$$
\begin{equation*}
B_{1}=\int_{0}^{\delta} \rho v_{1}(\vec{v} \cdot d \vec{A})=\int_{0}^{\delta} \rho v_{1}\left(-v_{1} d x_{2}\right)=-\int_{0}^{\delta} \rho v_{1}^{2} d x_{2} \tag{4.26}
\end{equation*}
$$

and through the surface $b b^{\prime}$ it is:

$$
\begin{equation*}
B_{2}=\int_{0}^{\delta} \rho v_{1}\left(v_{1} d x_{2}\right)+d x_{1} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1}\left(v_{1} d x_{2}\right) \tag{4.27}
\end{equation*}
$$

At the top side of the boundary layer (the surface $a^{\prime} b^{\prime}$ ) the expression for the momentum flux reads:

$$
\begin{align*}
B_{3} & =\int_{a^{\prime}}^{b^{\prime}} \rho v_{1}(\vec{v} \cdot d \vec{A})=v_{o} \int_{a^{\prime}}^{b^{\prime}} \rho \vec{v} \cdot d \vec{A} \\
& =-v_{o} d x_{1} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1} d x_{2} \tag{4.28}
\end{align*}
$$

as $v_{1}=v_{o}$ at the top side of the boundary layer, and equation (4.25) has been substituted.

On the right-hand side of the momentum equation the resultant of the pressure forces is rewritten to:

$$
\begin{equation*}
P_{i}^{+}=-\int_{A} p^{+} d A_{i}=-\int_{X} \frac{\partial p^{+}}{\partial x_{i}} d X \tag{4.29}
\end{equation*}
$$

by use of the gradient theorem derived in Appendix A. As the extent of the control surface in the $x_{1}$-direction is infinitesimal and $p^{+}$does not vary in the $x_{2}$-direction, we know that $\partial p^{+} / \partial x_{i}=$ constant within the control surface. Consequently we can rewrite the pressure force on $A$ to:

$$
\begin{equation*}
P_{i}^{+}=-\int_{X} \frac{\partial p^{+}}{\partial x_{i}} d X=-\frac{\partial p^{+}}{\partial x_{i}} \int_{X} d X=-\frac{\partial p^{+}}{\partial x_{i}} X \tag{4.30}
\end{equation*}
$$

and the component in the $x_{1}$-direction reads:

$$
\begin{equation*}
P_{1}^{+}=-\frac{\partial p^{+}}{\partial x_{1}} X=-\frac{\partial p^{+}}{\partial x_{1}} \cdot d x_{1} \cdot \delta \cdot 1 \tag{4.31}
\end{equation*}
$$

Shear stresses are only present at the bottom of the control surface. Being directed opposite to the flow direction, the $x_{1}$-component can expressed as:

$$
\begin{equation*}
T_{1}=-\tau_{o} \cdot d x_{1} \cdot 1 \tag{4.32}
\end{equation*}
$$

where $\tau_{o}(>0)$ is the shear stress at the plate. Substitution of these expressions into the momentum equation and division by $d x_{1}$ on both sides gives:

$$
\begin{equation*}
\int_{0}^{\delta} \rho \frac{\partial v_{1}}{\partial t} d x_{2}+\frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1}^{2} d x_{2}-v_{o} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1} d x_{2}=-\delta \frac{\partial p^{+}}{\partial x_{1}}-\tau_{o} \tag{4.33}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{0}^{\delta} \rho \frac{\partial v_{1}}{\partial t} d x_{2}+\frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1}\left(v_{1}-v_{o}\right) d x_{2}=-\delta \frac{\partial p^{+}}{\partial x_{1}}-\tau_{o} \tag{4.34}
\end{equation*}
$$

This equation is called the momentum equation for boundary layers. In practice it is used to calculate approximate values for the thickness of the boundary layer and the wall shear stress $\tau_{o}$. The pressure gradient is determined by the pressure gradient in potential flow outside the boundary layer, and if similar velocity profiles along the plate are assumed, only a single velocity profile has to be assessed in order to find $\delta$ from equation (4.34).


Figure 4.5: Boundary layer on a flat plate.
The flow depicted in Fig. 4.5 is steady assuming $v_{o}=$ constant. For the potential flow Bernoulli's generalized equation reads:

$$
\begin{equation*}
\frac{p^{+}}{\gamma}+\frac{v^{2}}{2 g}=\text { constant } \quad \text { as } \quad \frac{\partial \varphi}{\partial t}=0 \tag{4.35}
\end{equation*}
$$

In the potential flow we have $v \simeq v_{o}=$ constant, and thus $p^{+}=$constant. According to equation (4.2) this means that $p^{+}=$constant everywhere in the boundary layer, and consequently we have $\partial p^{+} / \partial x_{1}=0$ in the boundary layer.
Thus the momentum equation for the boundary layer reads:

$$
\begin{equation*}
0+\frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1}\left(v_{1}-v_{o}\right) d x_{2}=-0-\tau_{o} \tag{4.36}
\end{equation*}
$$

The assessed velocity profile has to fulfill the following boundary conditions:

1) $v_{1}=0$ for $x_{2}=0$
2) $v_{1}=v_{o}$ for $x_{2}=\delta$
3) $\frac{\partial v_{1}}{\partial x_{2}}=0$ for $x_{2}=\delta$ (corresponding to no shear stress at the top layer)

These conditions are fulfilled by the profile:

$$
\begin{equation*}
v_{1}=v_{o} \sin \frac{\pi x_{2}}{2 \delta} \tag{4.37}
\end{equation*}
$$

but they can also be fulfilled by an appropriate polynomial.
The shear stress at the plate is calculated by Newton's formula, which after substitution of the assessed profile reads:

$$
\begin{equation*}
\tau_{o}=\mu\left(\frac{\partial v_{1}}{\partial x_{2}}\right)_{x_{2}=0}=\mu \frac{\pi v_{o}}{2 \delta}\left(\cos \frac{\pi x_{2}}{2 \delta}\right)_{x_{2}=0}=\mu \frac{\pi v_{o}}{2 \delta} \cdot 1 \tag{4.38}
\end{equation*}
$$

Substitution of $v_{1}$ gives:

$$
\begin{align*}
\int_{0}^{\delta} \rho v_{1}\left(v_{1}-v_{o}\right) d x_{2} & =\int_{0}^{\delta} \rho v_{o} \sin \frac{\pi x_{2}}{2 \delta}\left(v_{o} \sin \frac{\pi x_{2}}{2 \delta}-v_{o}\right) d x_{2} \\
& =\rho v_{o}^{2} \frac{2 \delta}{\pi} \int_{0}^{\delta} \sin \frac{\pi x_{2}}{2 \delta}\left(\sin \frac{\pi x_{2}}{2 \delta}-1\right) d \frac{\pi x_{2}}{2 \delta} \\
& =\rho v_{o}^{2} \frac{2 \delta}{\pi}\left(\frac{\pi}{4}-1\right) \tag{4.39}
\end{align*}
$$

As $\delta$ depends on $x_{1}$ only, the left-hand side of the momentum equation reads:

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho v_{1}\left(v_{1}-v_{o}\right) d x_{2}=\rho v_{o}^{2} \frac{2}{\pi}\left(\frac{\pi}{4}-1\right) \frac{d \delta}{d x_{1}} \tag{4.40}
\end{equation*}
$$

Substitution of the equations (4.38) and (4.40) into equation (4.36) yields:

$$
\begin{equation*}
\rho v_{o}^{2} \frac{2}{\pi}\left(\frac{\pi}{4}-1\right) \frac{d \delta}{d x_{1}}=-\frac{\mu \pi v_{o}}{2 \delta} \tag{4.41}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d \delta^{2}}{d x_{1}}=\frac{\mu \pi^{2}}{2 \rho v_{o}\left(1-\frac{\pi}{4}\right)}=\frac{\nu \pi^{2}}{2 v_{o}\left(1-\frac{\pi}{4}\right)} \tag{4.42}
\end{equation*}
$$

where $\mu=\nu \rho$ has been substituted. Integration gives:

$$
\begin{equation*}
\delta^{2}=\frac{\nu \pi^{2}}{2 v_{o}\left(1-\frac{\pi}{4}\right)} x_{1}+C_{1} \tag{4.43}
\end{equation*}
$$

The constant $C_{1}$ is determined by using the boundary condition: $\delta=0$ for $x_{1}=0$, which gives $C_{1}=0$. The approximate expression for the boundary layer thickness therefore reads:

$$
\begin{equation*}
\delta=\sqrt{\frac{\nu \pi^{2} x_{1}}{2 v_{o}\left(1-\frac{\pi}{4}\right)}}=4.80 \sqrt{\frac{\nu x_{1}}{v_{o}}} \tag{4.44}
\end{equation*}
$$

The corresponding displacement thickness reads:

$$
\delta^{*}=\int_{0}^{\delta}\left(1-\sin \frac{\pi x_{2}}{2 \delta}\right) d x_{2}=0.363 \delta=1.74 \sqrt{\frac{\nu x_{1}}{v_{o}}}
$$

The choice of a velocity profile could be crucial for the accuracy of the estimates. That's why estimates obtained by two different assessed profiles are shown in the table below. Note that $\eta=x_{2} / \delta$ in the table.

| velocity profile | $\delta^{*} \sqrt{\frac{v_{o}}{\nu x_{1}}}$ | $\frac{\tau_{o}}{\rho v_{o}^{2}} \sqrt{\frac{v_{o} x_{1}}{\nu}}$ |
| :---: | :---: | :---: |
| $f(\eta)=1.5 \eta-0.5 \eta^{3}$ | 1.74 | 0.32 |
| $f(\eta)=\sin \left(\frac{\pi}{2} \eta\right)$ | 1.74 | 0.33 |
| correct profile | 1.72 | 0.33 |

It is seen that both the displacement thickness and the shear at the plate are estimated well by the momentum equation for boundary layers, and apparently the choice of velocity profile is not important.

### 4.4 Separation

In general the velocity profiles in a boundary layer are not similar. Such layers can be analyzed by a method proposed by Pohlhausen (1921).

It is assumed that the flow is steady, and that the velocity profiles can be described by a 4 th order polynomial, i.e.

$$
\begin{equation*}
\frac{v_{1}}{v_{o}}=f(\eta)=a \eta+b \eta^{2}+c \eta^{3}+d \eta^{4} \tag{4.45}
\end{equation*}
$$

where $\eta=\frac{x_{2}}{\delta}$, i.e. it is assumed that the thickness of the layer is finite. This polynomial is seen to fulfill the boundary condition $v_{1}=0$ for $x_{2}=0$.

The four coefficients $a, b, c$ and $d$ are determined by adopting the following boundary conditions:

1) Continuous velocity profile:

$$
f(1)=1, \text { corresponding to } \frac{v_{1}}{v_{o}}=1 \text { for } \frac{x_{2}}{\delta}=1
$$

2) No shear stress at the top of the boundary layer:

$$
f^{\prime}(1)=0, \text { corresponding to } \frac{\partial v_{1}}{\partial x_{2}}=0 \text { for } \frac{x_{2}}{\delta}=1
$$

3) No curvature of the velocity profile at the top of the boundary layer:

$$
f^{\prime \prime}(1)=0, \text { corresponding to } \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}=0 \text { for } \frac{x_{2}}{\delta}=1
$$

4) Very close to a wall the velocities remain low. Consequently also accelerations are small close to a wall, and the equation of motion (4.4) is approximated by:

$$
0 \approx-\frac{\partial p^{+}}{\partial x_{1}}+\mu \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}
$$

or

$$
\begin{equation*}
\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}=\frac{1}{\mu} \frac{\partial p^{+}}{\partial x_{1}} \quad \text { for } \quad x_{2}=0 \tag{4.46}
\end{equation*}
$$

Here $\partial p^{+} / \partial x_{1}$ is controlled by the flow outside the boundary layer and by use of Bernoulli's generalized equation i.e. $p^{+}+1 / 2 \rho v_{o}^{2}=$ constant derived with respect to $x_{1}$, the gradient reads:

$$
\begin{equation*}
\frac{\partial p^{+}}{\partial x_{1}}=-\rho v_{o} \frac{\partial v_{o}}{\partial x_{1}} \tag{4.47}
\end{equation*}
$$

As

$$
\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}}=\frac{v_{o}}{\delta^{2}} f^{\prime \prime}(\eta)
$$

equation (4.46) can be rewritten to:

$$
v_{o} f^{\prime \prime}(0) \frac{1}{\delta^{2}}=\frac{1}{\mu} \frac{\partial p^{+}}{\partial x_{1}}
$$

or

$$
\begin{equation*}
f^{\prime \prime}(0)=\frac{\delta^{2}}{\mu v_{o}} \frac{\partial p^{+}}{\partial x_{1}} \tag{4.48}
\end{equation*}
$$

Notice that close to a wall the curvature of the profile depends on the pressure gradient outside the boundary layer.

Defining the parameter $\Lambda$ as:

$$
\begin{equation*}
\Lambda=-\frac{\delta^{2}}{\mu v_{o}} \frac{\partial p^{+}}{\partial x_{1}} \tag{4.49}
\end{equation*}
$$

and making use of the four boundary conditions for $f(\eta)$ gives (after some algebra) expressions for $a, b, c$ og $d$. Without going into details the result can be expressed as:

$$
\begin{equation*}
\frac{v_{1}}{v_{o}}=F(\eta)+\Lambda G(\eta) \tag{4.50}
\end{equation*}
$$

where

$$
\begin{aligned}
& F(\eta)=2 \eta-2 \eta^{3}+\eta^{4} \\
& G(\eta)=\frac{1}{6}\left(\eta-3 \eta^{2}+3 \eta^{3}-\eta^{4}\right)
\end{aligned}
$$

Thus, the velocity profiles are not similar, but they are part of a one-parameter profile family with form parameter $\Lambda$.

Substitution of this expression into the momentum equation makes it possible to calculate the boundary layer thickness $\delta$ and wall shear stress $\tau_{o}$ the same way it was done for similar profiles.


Figure 4.6: Non-similar velocity profiles in boundary layers.

The sign and magnitude of $\Lambda$ are, however, decisive for the shape of the velocity profile, see Fig. 4.6.

If the fluid particles are flowing towards decreasing pressure, we have $\Lambda>0$, as the pressure gradient is negative. From Fig. 4.6 it is seen that the velocity profiles are close to being similar for $\Lambda>0$.

On the other hand, if the fluid particles flow towards increasing pressure, we have $\Lambda<0$, as the pressure gradient is positive. In this case the shape of the profile strongly depends on $\Lambda$. From Fig. 4.6 it is seen that for $\Lambda=-12$, the tangent to the velocity profile at the wall is perpendicular to the wall, and for $\Lambda<-12$, the flow is reversed in the area closest to the wall. The spot in the boundary layer, where $\Lambda=-12$ appears, is called the point of separation. On the length after this point, we say that the flow is separated from the wall.

If we consider the flow past a circular cylinder, see Fig. 3.8, the pressure is decreasing from the upstream stagnation point up to the point, where the $x_{2}$-axis intersects the cylinder. Therefore, separation does not occur on this length. On the downstream side of the cylinder the pressure is increasing in the flow direction, and separation occurs as depicted in the figure. In practice, the position of the point of separation and the course of the flow behind the cylinder strongly depend on Reynolds' number, and the appearance in Fig. 3.8 only occurs for $10<R e<40$.

## Chapter 5

## Turbulent Flows

A transition from laminar to turbulent flow always takes place, when either the characteristic velocity or the characteristic length in Reynolds' number, Re = $V L / \nu$, exceeds a certain value. For the flow in a circular pipe with diameter $D$ and discharge (volume flux) $Q$, the diameter $D$ and the average velocity $V=Q / A$ are often selected as characteristic length and characteristic velocity, respectively. Experiments show that the transition to turbulent flow takes place at

$$
\begin{equation*}
R e=\frac{V D}{\nu} \approx 2300 \tag{5.1}
\end{equation*}
$$

As for pure water $\nu \approx 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$, the transition takes place at $V=0.046 \mathrm{~m} / \mathrm{s}$ for a flow in a pipe with diameter $D=0.05 \mathrm{~m}$. Consequently nearly all pipe flows are turbulent in practice.

Turbulence is caused by instability of a flow. If a disturbance is introduced into a flow, it has been shown that an increase of the energy corresponding to the disturbance always takes place if the Reynolds number is large enough. The disturbance is spread into the entire flow, and the result is the very chaotic type of flow, which we call turbulent flow.

The velocity field corresponding to smoothed (with time, i.e. low-pass filtered) values of the velocities is called the mean flow, and a turbulent flow may be considered as the mean flow superposed by eddies causing the velocity fluctuations of stochastic nature.

Navier-Stokes equation is still valid for the fluid particles in a turbulent flow, but an analytical solution is excluded. Also, a direct numerical solution is excluded in most cases, as it is necessary to describe (resolve) all the small eddies in the flow. In practice this demands so many grid points in the calculation that both
memory and computational speed are inadequate except for the so-called super computers. However, some direct numerical solutions exist, and they are used as benchmarks for the approximate solutions obtainable with ordinary commercial numerical solvers and computers. These solvers do not try to resolve the small eddies, but they attempt to take the effect of the eddies into account by use of so-called turbulence models.

### 5.1 Stability of Laminar Flow

In the following it is shown that for sufficiently large values of Reynolds' number, any disturbance in a laminar flow will grow with time, and transition to turbulent flow takes place.

The stability analysis is based on the vorticity transport equation for two-dimensional flow, i.e.

$$
\begin{equation*}
\frac{d(\operatorname{rot} \vec{v})_{3}}{d t}=\nu \nabla^{2}(\operatorname{rot} \vec{v})_{3} \tag{5.2}
\end{equation*}
$$

and a flow close to a wall is considered, see Fig. 5.1.


Figure 5.1: Disturbance of an initially steady, laminar flow close to a wall.

In this section variables corresponding to the initially, steady flow are denoted with capital letters and the disturbances with small letters.
The velocity field in the undisturbed laminar flow is:

$$
\begin{aligned}
& v_{1}=U\left(x_{2}\right) \\
& v_{2}=0
\end{aligned}
$$

and the angular velocity of the fluid particles, $\Omega$, in the undisturbed flow therefore
reads:

$$
\begin{align*}
\Omega & =\frac{1}{2}(\operatorname{rot} \vec{v})_{3} \\
& =\frac{1}{2}\left(\frac{\partial v_{2}}{\partial x_{1}}-\frac{\partial v_{1}}{\partial x_{2}}\right) \\
& =-\frac{1}{2} \frac{\partial U}{\partial x_{2}} \tag{5.3}
\end{align*}
$$

Substitution of $\Omega=1 / 2(\operatorname{rot} \vec{v})_{3}$ and the expression for rate of change into equation (5.2) gives:

$$
\begin{equation*}
\frac{\partial \Omega}{\partial t}+v_{1} \frac{\partial \Omega}{\partial x_{1}}+v_{2} \frac{\partial \Omega}{\partial x_{2}}=\nu \nabla^{2} \Omega \tag{5.4}
\end{equation*}
$$

Here $\partial \Omega / \partial t=0$ due to steady laminar flow, and $v_{2}=0$ gives:

$$
\begin{equation*}
U \frac{\partial \Omega}{\partial x_{1}}=\nu \nabla^{2} \Omega \tag{5.5}
\end{equation*}
$$

After introduction of the disturbance, the velocity field is:

$$
\begin{aligned}
& v_{1}=U\left(x_{2}\right)+u_{1}(t) \\
& v_{2}=0+u_{2}(t)
\end{aligned}
$$

and equation (5.2) reads:

$$
\begin{equation*}
\frac{\partial(\Omega+\omega)}{\partial t}+\left(U+u_{1}\right) \frac{\partial(\Omega+\omega)}{\partial x_{1}}+\left(0+u_{2}\right) \frac{\partial(\Omega+\omega)}{\partial x_{2}}=\nu \nabla^{2}(\Omega+\omega) \tag{5.6}
\end{equation*}
$$

where $\omega$ is the angular velocity corresponding to the disturbance. As the changes of the undisturbed flow are much smaller in the flow direction than in the direction perpendicular to the flow direction, it is assumed that:

$$
\begin{equation*}
\frac{\partial \Omega}{\partial x_{1}} \ll \frac{\partial \Omega}{\partial x_{2}} \tag{5.7}
\end{equation*}
$$

Again $\partial \Omega / \partial t=0$, and substitution of equation (5.5) into equation (5.6) gives:

$$
\begin{equation*}
\frac{\partial \omega}{\partial t}+\left(U+u_{1}\right) \frac{\partial \omega}{\partial x_{1}}+\left(0+u_{2}\right) \frac{\partial \omega}{\partial x_{2}}=-u_{2} \frac{\partial \Omega}{\partial x_{2}}+\nu \nabla^{2} \omega \tag{5.8}
\end{equation*}
$$

According to the expression for rate of change the left-hand side of this equation is the substantial rate of change for $\omega$, and equation (5.8) is rewritten to:

$$
\begin{equation*}
\frac{d \omega}{d t}=-u_{2} \frac{\partial \Omega}{\partial x_{2}}+\nu \nabla^{2} \omega \tag{5.9}
\end{equation*}
$$

After multiplication by $\omega$ on both sides, the equation reads:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} \omega^{2}\right)=-\frac{\partial \Omega}{\partial x_{2}} u_{2} \omega+\nu \omega\left(\frac{\partial^{2} \omega}{\partial x_{1}^{2}}+\frac{\partial^{2} \omega}{\partial x_{2}^{2}}\right) \tag{5.10}
\end{equation*}
$$

Next the individual terms of this equation will be interpreted on a physical basis.
The term on the left-hand side is proportional to the rate of change of the rotational energy of a fluid particle. If this rate of change is positive, more energy is bound to the disturbance, i.e. the disturbance will grow.

The first term on the right-hand side of equation (5.10) describes the production of rotational energy in the disturbance, as shown below. The fundamental variation of $\Omega$ is depicted in Fig. 5.2. Notice that $\Omega<0$, as the particles are turning clockwise. Consider a fluid particle, which at the time $t=0$ has the angular


Figure 5.2: Production of rotational energy.
velocity $\Omega_{a}+\omega_{a}$ at the distance $a$ from the wall. At the time $t=0+d t$ the particle's distance to the wall is $b=a+u_{2} d t$, and due to the limited influence of viscosity during $d t$, the angular velocity of the particle remains nearly constant, i.e.

$$
\Omega_{a}+\omega_{a} \approx \Omega_{b}+\omega_{b}
$$

Substitution of

$$
\Omega_{b}=\Omega_{a}+\frac{\partial \Omega}{\partial x_{2}} u_{2} d t
$$

gives

$$
\omega_{a} \approx \frac{\partial \Omega}{\partial x_{2}} u_{2} d t+\omega_{b}
$$

or

$$
\frac{d \omega}{d t}=\frac{\omega_{b}-\omega_{a}}{d t} \approx-\frac{\partial \Omega}{\partial x_{2}} u_{2}
$$

Multiplication by $\omega$ on both sides of the equation gives

$$
\frac{d}{d t}\left(\frac{1}{2} \omega^{2}\right) \approx-\frac{\partial \Omega}{\partial x_{2}} u_{2} \omega
$$

When the right-hand side is positive, there is an increase of the rotational energy of the particle corresponding to the disturbance, and consequently

$$
-\frac{\partial \Omega}{\partial x_{2}} u_{2} \omega
$$

may be interpreted as a term that represents the production of rotational energy corresponding to the disturbance.

The last term on the right-hand side of equation (5.10) represents the work done by the viscous forces, i.e. the transformation of mechanical energy to heat, also called dissipation. This term has to be negative, as a disturbance will always fade away unless the flow is constantly supplied with energy.

The ratio between production and dissipation can be assessed from equation (5.10) on non-dimensional form. Below, non-dimensional variables are marked with an apostrophe, and to obtain non-dimensional variables we make use of the variables:
$\delta \quad$ the thickness of the boundary layer near the wall, where $\Omega \neq 0$
$\Omega_{o}$ the angular velocity at the wall
$U_{m}$ the velocity outside the boundary layer.

The equations defining the non-dimensional variables are chosen to be:

$$
\begin{array}{ll}
t=\delta / U_{m} t^{\prime} & , \quad \Omega=\Omega_{o} \Omega^{\prime} \quad, \quad \omega=\Omega_{o} \omega^{\prime} \\
u_{2}=U_{m} u_{2}^{\prime} \quad, \quad x_{1}=\delta x_{1}^{\prime} \quad, \quad x_{2}=\delta x_{2}^{\prime}
\end{array}
$$

Integration of equation (5.10) over the thickness of the boundary layer and subsequent substitution of the non-dimensional variables yield:

$$
\begin{equation*}
\frac{d}{d t^{\prime}} \int_{0}^{1} \frac{1}{2}\left(\omega^{\prime}\right)^{2} d x_{2}^{\prime}=\int_{0}^{1}\left(-\frac{\partial \Omega^{\prime}}{\partial x_{2}^{\prime}} u_{2}^{\prime} \omega^{\prime}\right) d x_{2}^{\prime}+\frac{1}{R e} \int_{0}^{1} \omega^{\prime}\left(\frac{\partial^{2} \omega^{\prime}}{\partial x_{1}^{\prime 2}}+\frac{\partial^{2} \omega^{\prime}}{\partial x_{2}^{\prime 2}}\right) d x_{2}^{\prime} \tag{5.11}
\end{equation*}
$$

where

$$
R e=\frac{U_{m} \delta}{\nu}
$$

It is seen that Re can be interpreted as a Reynolds number for the flow. It is also seen that for increasing values of $R e$, the importance of the last term of equation (5.11) decreases.

If $R e$ is small enough, the dissipative term becomes large compared to the production term, and all disturbances introduced to the laminar flow will fade away.

On the other hand, if $R e$ is sufficiently large, the dissipative term becomes small compared to the production term, and consequently any disturbance will grow, until the flow ends up as a fully turbulent flow.

### 5.2 Description of Turbulent Flow

Often turbulent flow is considered as the mean flow superposed by eddies causing velocity fluctuations of stochastic nature.

Even though all turbulent flows are per definition unsteady, we talk about steady turbulent flow, if the mean flow is steady. If we consider a steady mean flow in a pipe, time series of the three velocity components will in principle look as depicted in Fig. 5.3. In the rest of this book the velocity field of the mean flow


Figure 5.3: Time series of velocity components in steady mean flow
is denoted $U_{i}$ and the turbulent fluctuations are denoted $u_{i}$.
For an unsteady mean flow the general velocity field $v_{i}\left(x_{k}, t\right)$ reads:

$$
\begin{equation*}
v_{i}\left(x_{k}, t\right)=U_{i}\left(x_{k}, t\right)+u_{i}\left(x_{k}, t\right) \tag{5.12}
\end{equation*}
$$

Fig. 5.4 shows a time series of fluctuations in a pipe flow, where the discharge (volume flux) is varying periodically with time. Notice that the discharge is varying much slower than the turbulent fluctuations do.

The fluctuations can be considered as stochastic variables, so we are in practice satisfied, if it is possible to determine the mean flow $U_{i}\left(x_{k}, t\right)$ after, in some way or another, the effect of the fluctuations has been taken into account.

If $\Delta t$ denotes a sufficiently large time span (compared to the time scale of the fluctuations), a smoothed value of the variable $a(t)$ is defined as:

$$
\begin{equation*}
\overline{a(t)}=\frac{1}{\Delta t} \int_{-\Delta t / 2}^{\Delta t / 2} a\left(t+t^{\prime}\right) d t^{\prime} \tag{5.13}
\end{equation*}
$$

where ${ }^{-}$denotes a value smoothed over time (low-pass filtered).
Thus velocity components in the mean flow reads:

$$
\begin{equation*}
U_{i}(t)=\overline{v_{i}(t)}=\frac{1}{\Delta t} \int_{-\Delta t / 2}^{\Delta t / 2} v_{i}\left(t+t^{\prime}\right) d t^{\prime} \tag{5.14}
\end{equation*}
$$



Figure 5.4: Time series of velocity component in pipe flow with slowly varying discharge.

If the $x_{1}$-axis coincides with the pipe axis, we see that $U_{1}\left(x_{k}, t\right) \neq 0$ and the two other components are zero.

Application of $\Delta t=4$ secs when smoothing the time series in Fig. 5.4, leads to the mean flow and fluctuations depicted in Fig. 5.5. Notice that the breakdown into mean flow and fluctuations by smoothing with time only makes sense if $T_{f} \ll \Delta t \ll T_{m}$, where $T_{f}$ and $T_{m}$ are typical periods in fluctuations and mean flow, respectively.

Substitution of equation (5.12) into equation (5.14) yields:

$$
U_{i}(t)=\frac{1}{\Delta t} \int_{-\Delta t / 2}^{\Delta t / 2} U_{i}\left(t+t^{\prime}\right) d t^{\prime}+\frac{1}{\Delta t} \int_{-\Delta t / 2}^{\Delta t / 2} u_{i}\left(t+t^{\prime}\right) d t^{\prime}
$$

If the variation with time of the mean flow is so slow that the velocity varies approximately linearly over $\Delta t$, we get:

$$
U_{i}(t)=U_{i}(t)+\overline{u_{i}(t)}
$$

and therefore:

$$
\begin{equation*}
\overline{u_{i}}=0 \tag{5.15}
\end{equation*}
$$

In the following it is necessary to calculate smoothed values of derivatives like e.g $\partial a(t) / \partial x_{i}$. In such a case we find:

$$
\begin{equation*}
\overline{\frac{\partial a}{\partial x_{i}}}=\frac{1}{\Delta t} \int_{-\Delta t / 2}^{\Delta t / 2} \frac{\partial a\left(t+t^{\prime}\right)}{\partial x_{i}} d t^{\prime}=\frac{\partial}{\partial x_{i}}\left(\frac{1}{\Delta t} \int_{-\Delta t / 2}^{\Delta t / 2} a\left(t+t^{\prime}\right) d t^{\prime}\right)=\frac{\partial \bar{a}}{\partial x_{i}} \tag{5.16}
\end{equation*}
$$



Figure 5.5: Time series mean flow and fluctuations in pipe flow with slowly varying discharge.

The smoothed version of the continuity equation reads:

$$
\begin{equation*}
\overline{\frac{\partial v_{i}}{\partial x_{i}}}=\overline{\frac{\partial U_{i}}{\partial x_{i}}+\frac{\partial u_{i}}{\partial x_{i}}}=\frac{\partial U_{i}}{\partial x_{i}}+\overline{\frac{\partial u_{i}}{\partial x_{i}}}=0 \tag{5.17}
\end{equation*}
$$

and application of equation (5.16) to the last term gives:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial x_{i}}+\frac{\partial \overline{u_{i}}}{\partial x_{i}}=0 \tag{5.18}
\end{equation*}
$$

As $\partial \overline{u_{i}} / \partial x_{i}=0$, when $\overline{u_{i}}=0$ everywhere, the continuity equation for the mean flow reads:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial x_{i}}=0 \tag{5.19}
\end{equation*}
$$

Consider the Navier-Stokes equation:

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=-\frac{\partial p^{+}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{5.20}
\end{equation*}
$$

Below a smoothed version of this Navier-Stokes equation is derived. The acceleration term is rewritten to:

$$
\begin{equation*}
\frac{d v_{i}}{d t}=\frac{\partial v_{i}}{\partial t}+\frac{\partial v_{i}}{\partial x_{j}} \cdot v_{j}=\frac{\partial v_{i}}{\partial t}+\frac{\partial}{\partial x_{j}}\left(v_{i} v_{j}\right)-v_{i} \frac{\partial v_{j}}{\partial x_{j}} \tag{5.21}
\end{equation*}
$$

where the last term according to the continuity equation is zero. Substitution of equation (5.21) into equation (5.20) gives:

$$
\begin{equation*}
\rho \frac{\partial v_{i}}{\partial t}+\rho \frac{\partial}{\partial x_{j}}\left(v_{i} v_{j}\right)=-\frac{\partial p^{+}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{5.22}
\end{equation*}
$$

Like the velocities, the dynamic pressure $p^{+}$is, divided into a smoothed part $\overline{p^{+}}$and a fluctuation $\left(p^{+}\right)^{\prime}$, i.e.

$$
\begin{equation*}
p^{+}=\overline{p^{+}}+\left(p^{+}\right)^{\prime} \tag{5.23}
\end{equation*}
$$

where $\overline{\left(p^{+}\right)^{\prime}}=0$ per definition.
Substitution of equation (5.12) and (5.23) into equation (5.22), and subsequent smoothing give:

$$
\begin{equation*}
\rho \frac{\partial U_{i}}{\partial t}+\rho \overline{\frac{\partial}{\partial x_{j}}\left(\left(U_{i}+u_{i}\right)\left(U_{j}+u_{j}\right)\right)}=-\frac{\partial\left(\overline{p^{+}}\right)}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)\right) \tag{5.24}
\end{equation*}
$$

where $\overline{U_{i}}=U_{i}, \overline{u_{i}}=0$ and $\overline{\left(p^{+}\right)^{\prime}}=0$ has been used. The second term on the left-hand side is rewritten as follows:

$$
\begin{align*}
& \overline{\frac{\partial}{\partial x_{j}}\left(U_{i} U_{j}+U_{i} u_{j}+u_{i} U_{j}+u_{i} u_{j}\right)}= \\
& \frac{\partial}{\partial x_{j}}\left(\overline{U_{i}} U_{j}\right.\left.\overline{U_{i} u_{j}}+\overline{u_{i} U_{j}}+\overline{u_{i} u_{j}}\right) \\
&=  \tag{5.25}\\
& \frac{\partial\left(U_{i} U_{j}\right)}{\partial x_{j}}+\frac{\partial\left(U_{i} \overline{u_{j}}\right)}{\partial x_{j}}+\frac{\partial\left(\overline{u_{i}} U_{j}\right)}{\partial x_{j}}+\frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}}=\frac{\partial\left(U_{i} U_{j}\right)}{\partial x_{j}}+\frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}}
\end{align*}
$$

where $\overline{u_{i}}=0$ is applied.

The left-hand side of the smoothed Navier-Stokes equation (5.24) is then rewritten to:

$$
\begin{aligned}
\rho \frac{\partial U_{i}}{\partial t}+\rho \frac{\partial\left(U_{i} U_{j}\right)}{\partial x_{j}}+\rho \frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}} & =\rho \frac{\partial U_{i}}{\partial t}+\rho U_{j} \frac{\partial U_{i}}{\partial x_{j}}+\rho U_{i} \frac{\partial U_{j}}{\partial x_{j}}+\rho \frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}} \\
& =\rho \frac{\partial U_{i}}{\partial t}+\rho U_{j} \frac{\partial U_{i}}{\partial x_{j}}+\rho \frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}} \\
& =\rho \frac{d U_{i}}{d t}+\rho \frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}}
\end{aligned}
$$

where the expression for rate of change and the continuity equation for the mean flow (5.19) have been used. In this way the smoothed Navier-Stokes equation
reads:

$$
\begin{equation*}
\rho \frac{d U_{i}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)\right)-\rho \frac{\partial\left(\overline{u_{i} u_{j}}\right)}{\partial x_{j}} \tag{5.26}
\end{equation*}
$$

or

$$
\begin{equation*}
\rho \frac{d U_{i}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)-\rho \overline{u_{i} u_{j}}\right) \tag{5.27}
\end{equation*}
$$

This version is also named the Navier-Stokes equation for turbulent flow.
Notice that the last term on the right-hand side appeared, when the acceleration term in the Navier-Stokes equation was smoothed. Therefore, this term describes an acceleration (and change in momentum), which cannot be described by use of the velocities in the mean flow. As shown below, this term describes the effect of the exchange of momentum caused by the fluctuations. The term is therefore quite similar to the viscous term (the next-to-last term on the right-hand side), which describes the effect of the exchange of momentum caused by the motion of the molecules.

Notice that if the continuity equation for the mean flow is used, we can rewrite equation (5.27) to:

$$
\begin{equation*}
\rho \frac{d U_{i}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{i}}+\frac{\partial}{\partial x_{j}}\left(\mu \frac{\partial U_{i}}{\partial x_{j}}-\rho \overline{u_{i} u_{j}}\right) \tag{5.28}
\end{equation*}
$$

Example: The effect of exchange of momentum between two trains
Two trains, denoted $L(e f t)$ and $R(i g h t)$, are moving in the same direction at different velocities. Train $L$ has the velocity $U_{1}+\Delta U_{1}$ and train $R$ has the velocity $U_{1}$. Suddenly, the staff on the trains start to spray water on each other. Both teams use a discharge of $Q \mathrm{~m}^{3} / \mathrm{s}$, see Fig. 5.6.


Figure 5.6: Exchange of momentum between two trains.

Even though the mass of each train is constant with time, the engine driver on train $L$ has to increase the driving force from the engine in order to keep the velocity unchanged. The opposite happens for train $R$. Why ?

The conditions in the direction of the $x_{1}$-axis are considered. $Q \Delta t \mathrm{~m}^{3}$ of water is transferred from train $R$ to train $L$ during $\Delta t$ secs. As the velocity of this water is increased from $U_{1}$ to $U_{1}+\Delta U_{1}$, the momentum of the water is also increased. This requires the impulse

$$
F_{\text {water }, 1}^{L} \cdot \Delta t=m\left(U_{1}+\Delta U_{1}\right)-m U_{1}=m \Delta U_{1}=\rho Q \Delta t \Delta U_{1}
$$

where $F_{\text {water }, 1}^{L}$ is the force from the train on the water. After division by $\Delta t$ the expression for this force reads:

$$
F_{\text {water }, 1}^{L}=\rho Q \Delta U_{1}>0
$$

As action $=$ re-action (Newton's third law) the force from the water on train $L$ becomes:

$$
F_{\text {train }, 1}^{L}=-F_{\text {water }, 1}^{L}=-\rho Q \Delta U_{1}<0
$$

Similarly we find for the water transferred from train $L$ to $\operatorname{train} R$ :

$$
F_{w a t e r, 1}^{R}=\rho Q\left(-\Delta U_{1}\right)<0
$$

and therefore

$$
F_{\text {train }, 1}^{R}=-F_{w a t e r, 1}^{R}=-\rho Q\left(-\Delta U_{1}\right)=\rho Q \Delta U_{1}>0
$$

The exchange of momentum is therefore equivalent to the shear for $F=\rho Q \Delta U_{1}$ between the trains.


Figure 5.7: Dynamically equivalent descriptions of two trains.

Notice that you need not describe the discharges between the trains, if you remember to include their effect, which is the shearing force between the two trains, see Fig. 5.7.


Figure 5.8: Dynamically equivalent descriptions of turbulent flow.

In many cases, the eddies, causing the fluctuations in a turbulent flow, will also cause an exchange of momentum across a section dividing two parts of the flow. If we do not want to describe these eddies, i.e. we only want to calculate the mean flow, we must remember to include their dynamic effect in the calculation. This is done by introducing shear stress to the mean flow, see Fig. 5.8.

The $x_{1}$-component of equation (5.27) for a two-dimensional flow reads:

$$
\begin{aligned}
\rho \frac{d U_{1}}{d t}= & -\frac{\partial \overline{p^{+}}}{\partial x_{1}}+\frac{\partial}{\partial x_{1}}\left(\mu\left(\frac{\partial U_{1}}{\partial x_{1}}+\frac{\partial U_{1}}{\partial x_{1}}\right)-\rho \overline{u_{1} u_{1}}\right) \\
& +\frac{\partial}{\partial x_{2}}\left(\mu\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right)-\rho \overline{u_{1} u_{2}}\right)
\end{aligned}
$$

In case of uniform flow in the direction of the $x_{1}$-axis, we have $\partial U_{1} / \partial x_{1}=0$ and $\partial\left(\overline{u_{1} u_{1}}\right) / \partial x_{1}=0$, which gives this version of the Navier-Stokes equation:

$$
\begin{equation*}
\rho \frac{d U_{1}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\left(\mu\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right)-\rho \overline{u_{1} u_{2}}\right) \tag{5.29}
\end{equation*}
$$

Because most literature on fluid mechanics denotes shear stresses $\tau$, this is also done in the following.

As $\mu\left(\partial U_{1} / \partial x_{2}+\partial U_{2} / \partial x_{1}\right)$ is a smoothed value of the shear stress caused by viscosity, we introduce the name viscous shear stress, and we have:

$$
\overline{\tau_{21}^{v i s c}}=\mu\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right)
$$

Equation (5.29) can now be written as:

$$
\begin{equation*}
\rho \frac{d U_{1}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\left(\overline{\tau_{21}^{v i s c}}-\rho \overline{u_{1} u_{2}}\right) \tag{5.30}
\end{equation*}
$$

and it is seen that the term $-\rho \overline{u_{1} u_{2}}$ can be interpreted as an extra shear stress caused by the turbulence.

In turbulent flows we thus have two contributions to shear stress:

$$
\begin{equation*}
\overline{\tau_{j i}}=\overline{\tau_{j i}^{v i s c}}+\tau_{j i}^{t u r b} \tag{5.31}
\end{equation*}
$$

where

$$
\begin{equation*}
\overline{\tau_{j i}^{v i s c}}=\mu\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right) \quad \text { for } \quad i \neq j \tag{5.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{j i}^{t u r b}=-\rho \overline{u_{i} u_{j}} \quad \text { for } \quad i \neq j \tag{5.33}
\end{equation*}
$$

Except in certain domains, where large velocity gradients are present (usually in very thin layers close to fixed boundaries), we find $\tau_{j i}^{v i s c} \ll \tau_{j i}^{t u r b}$.

In general the term $-\rho \overline{u_{i} u_{j}}$ can be interpreted as extra stresses normally named Reynolds' stresses.

Unfortunately, equation (5.27) cannot be applied to calculate the mean flow, because a relation between $\tau_{j i}^{t u r b}=-\rho \overline{u_{i} u_{j}}$ and $U_{i}$ is missing. Despite considerable research within the area, no general theory exists, and in practice we are forced to apply approximate relations describing the relation between turbulence and mean flow. These approximate relations are normally named turbulence models, and in the following the oldest and most simple turbulence model is described.

### 5.3 Mixing Length Theory



Figure 5.9: Exchange of momentum across a section in the flow direction.
A uniform turbulent flow may be interpreted as the mean flow superposed with eddies of different size. These eddies will cause an exchange of fluid and momentum across a section parallel to the wall. At a given section it is assumed that the size of the eddies is comparable to a length scale $\ell$, but the size of this scale is unknown for the time being. It is assumed that an eddy of size $\ell$ can transport fluid from level I up to level II, if the distance between these two levels is of the order of magnitude $\ell$. Therefore, $\ell$ is often named the mixing length. Due to continuity the same amount of fluid has to be transported downwards.

Thus we have two equal, oppositely directed discharges (volume fluxes) through the area $A$. The magnitude of these is denoted $Q(>0)$.

Prandtl (1925) assumed that fluid particles were able to move a finite distance crosswise before they adopt the velocity of the surrounding fluid. Thus he assumed that fluid particles moving upwards from level I will reach level II, before they are moving in the $x_{1}$-direction at the same velocity as the surrounding fluid. Thus the fluid particle increases its velocity by

$$
\begin{equation*}
\Delta U_{1}=U_{1}\left(x_{2}+\ell\right)-U_{1}\left(x_{2}\right)=\ell \frac{\partial U_{1}}{\partial x_{2}} \tag{5.34}
\end{equation*}
$$

As shown in the previous example, this exchange of momentum is equivalent to the shear force

$$
F=\rho Q \Delta U_{1}
$$

and substitution of $F=\tau A$ and the expression for $\Delta U_{1}$ gives:

$$
\begin{equation*}
\tau=\rho \frac{Q}{A} \cdot \ell \frac{\partial U_{1}}{\partial x_{2}} \tag{5.35}
\end{equation*}
$$

Furthermore, Prandtl assumed that the order of magnitude of the fluctuations in the $x_{1}$-direction was proportional to the change of velocity in the mean flow over
the distance $\ell$. If the standard deviation is used to assess the order of magnitude of $u_{1}$, we have:

$$
\begin{equation*}
\sigma_{u_{1}}=k_{1}\left|\Delta U_{1}\right|=k_{1} \ell\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \tag{5.36}
\end{equation*}
$$

but $k_{1}$ is so far unknown. An eddy causes fluctuations in both directions, wherefore the fluctuations must have the same order of magnitude in both directions, i.e.

$$
\begin{equation*}
\sigma_{u_{2}} \approx \sigma_{u_{1}} \tag{5.37}
\end{equation*}
$$

The exchange of fluid across $A$ is caused by the eddies, wherefore $Q$ is proportional to the size of the crosswise fluctuations. This gives:

$$
\begin{equation*}
Q=k_{2} \sigma_{u_{2}} A \approx k_{2} \sigma_{u_{1}} A \tag{5.38}
\end{equation*}
$$

or

$$
\begin{equation*}
Q=k_{2} \cdot k_{1} \ell\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \cdot A \tag{5.39}
\end{equation*}
$$

Substitution of this expression into equation (5.35) yields:

$$
\tau=\rho \cdot k_{2} k_{1} \ell\left|\frac{\partial U_{1}}{\partial x_{2}}\right| A \frac{1}{A} \cdot \ell \frac{\partial U_{1}}{\partial x_{2}}=\rho\left(k_{1} k_{2} \ell^{2}\right)\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \frac{\partial U_{1}}{\partial x_{2}}
$$

Shear stress in a turbulent flow, can thus be expressed as:

$$
\begin{equation*}
\tau=\rho \ell_{b}^{2}\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \frac{\partial U_{1}}{\partial x_{2}} \tag{5.40}
\end{equation*}
$$

where $\ell_{b}^{2}=k_{1} k_{2} \ell^{2}$. It can be a bit confusing that $\ell_{b}$ is also named the mixing length, but in practice this causes no misunderstandings. We can determine $\ell_{b}$ only by measuring corresponding values of $\tau$ and $\frac{\partial U_{1}}{\partial x_{2}}$. Therefore, the magnitudes of $k_{1} k_{2}$ and $\ell$ remain unknown.
Equation (5.40) is of no use, unless we can determine the variation of the mixing length $\ell_{b}$. In order to do so, a few general considerations are relevant.

At the wall no turbulence is present, and, consequently, $\ell_{b}=0$ at the wall. As the size of the eddies is increasing with the distance to the wall, we also expect $\ell_{b}$ to be is increasing with the distance from the wall. Thus, the simplest and dimensionally correct assumption is that $\ell_{b}$ is proportional to the distance from the wall $x_{2}$ giving

$$
\begin{equation*}
\ell_{b}=\kappa x_{2} \tag{5.41}
\end{equation*}
$$

The constant $\kappa$ is named von Kármán's universal constant. Experiments have shown that for fully developed turbulent flows close to a wall, $\kappa \approx 0.41$, but it
should be remembered that $\ell_{b}=\kappa x_{2}$ is valid only within a limited distance from the wall, see Fig 7.1.

The exchange of momentum caused by the eddies in a turbulent flow is quite analog to the exchange of momentum caused by the heat dependent motions of the molecules. As we do not want to describe the individual molecular motions, i.e. we assume the fluid to be a continuum, it is necessary to take their effect into account. This is done by the introduction of equivalent shear stresses, named viscous shear stresses, given by Newton's formula:

$$
\overline{\tau_{21}^{v i s c}}=\rho \nu\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right)
$$

In the technical turbulence theory we do not want to describe the fluctuations, but their effect (exchange of momentum) is taken into account by the introduction of equivalent shear stresses, named turbulent shear stresses. Often they are modelled by Boussinesq's approximation, which is an equation similar to Newton's formula:

$$
\begin{equation*}
\tau_{21}^{t u r b}=\rho \nu_{T}\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right) \tag{5.42}
\end{equation*}
$$

where $\nu_{T}$ is named the eddy viscosity. If the equations (5.40) and (5.42) are compared for $U_{2}=0$, it is seen that

$$
\begin{equation*}
\nu_{T}=\ell_{b}^{2}\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \tag{5.43}
\end{equation*}
$$

Notice that $\nu_{T}$ varies in space in contrast to $\nu$, which is a constant depending of fluid type and temperature only. Therefore, in technical turbulence theory the expression for the total shear stress reads:

$$
\begin{equation*}
\tau_{21}=\overline{\tau_{21}^{v i s c}}+\tau_{21}^{t u r b}=\rho\left(\nu+\nu_{T}\right)\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right) \tag{5.44}
\end{equation*}
$$

In general $\nu_{T} \gg \nu$, and often $\overline{\tau^{v i s c}}$ is ignored. However, the assumption $\tau \approx$ $\tau^{\text {turb }}$ is not valid in general. For example it would lead to $\tau^{\text {wall }} \approx 0$ at a smooth wall, even though the largest shear stresses are found at the wall in reality.

Notice that according to equation (5.43) we find $\nu_{T}=0$ at places, where $\left|\partial U_{1} / \partial x_{2}\right|=0$. This is fairly unfortunate seen from a physical point of view.

Consider the flux $F$ of a dissolved substance through a section parallel to the direction of the mean flow, see Fig. 5.10. Concentration is denoted $c$ and has the unit kg (substance) per unit volume of the mixture (substance/fluid). A gradient of $c$ into direction of the $x_{2}$-axis is present.


Figure 5.10: Flux of dissolved substance across the flow direction.

As the mean flow has no velocity component perpendicular to the section, the only cause to the flux is diffusion, i.e.

$$
\begin{equation*}
F=-\left(D+D_{T}\right) \frac{\partial c}{\partial x_{2}} \approx-D_{T} \frac{\partial c}{\partial x_{2}} \tag{5.45}
\end{equation*}
$$

where $D$ is the ordinary diffusion coefficient (corresponding to the thermal motions of the molecules) and $D_{T}$ is a diffusion coefficient ( $\mathrm{m}^{2} / \mathrm{s}$ ), whose magnitude depends on the strength and size of the eddies. Unless the section is very close to the wall, we normally have $D \ll D_{T}$.

Next equation (5.42) is rewritten to

$$
\begin{equation*}
\tau_{21}^{\text {turb }}=\rho \nu_{T} \frac{\partial U_{1}}{\partial x_{2}}=\nu_{T} \frac{\partial\left(\rho U_{1}\right)}{\partial x_{2}} \tag{5.46}
\end{equation*}
$$

where $\rho U_{1}$ is momentum per unit volume.
Except from different signs, equation (5.46) and equation (5.45) are built in the same way. Thus, we can interpret $\tau_{21}^{t u r b}$ as the flux of momentum through the section, and interpret $\nu_{T}$ as the diffusion coefficient of the process.

In technical turbulence theory it is often assumed that $D_{T} \approx \nu_{T}$, i.e the dispersion mechanism for matter is the same as the dispersion mechanism for momentum.

The presence of eddies will always create a mixing of matter across the direction of the mean flow, and, consequently, the turbulent diffusion coefficient used to describe this mixing should be different from zero. It is therefore unfortunate, that equation (5.43) predicts $\nu_{T}=0$, at places where $\left|\partial U_{1} / \partial x_{2}\right|=0$. In practice eddies are present there, and calculations based on $D_{T}=\nu_{T}$ will underestimate the flux of matter.

Thus more advanced models of the connection between turbulence and shear stress are normally applied. The minimum requirement is usually a model, which always predicts $\nu_{T}>0$ in domains with eddies.

### 5.4 Velocity Profiles in Turbulent Flows

Consider the velocity fields in a turbulent flow. For the sake of simplicity only two-dimensional, steady and uniform flows in channels are considered. However, the results are valid in nearly unchanged form for flows in completely full pipes.

We consider the flow in a very wide channel with uniform bottom slope $\beta$ (the angle between the bottom and horizontal). In steady, uniform flow the use of simple dynamic considerations gives that the shear stress at the bottom has to be in equilibrium with the gravity force component parallel to the bottom, if we ignore the very small shear stress between fluid and air at the surface. It is also easy to show that the shear stress varies linearly over a section perpendicular to the bottom. Both results are valid for both laminar and turbulent flows.

Thus the shear stress at the bottom reads:

$$
\begin{equation*}
\tau_{o}=\rho g D \sin \beta \tag{5.47}
\end{equation*}
$$

where $D$ is the constant fluid depth, and the distribution of the shear stress is

$$
\begin{equation*}
\tau=\tau_{o}\left(1-\frac{x_{2}}{D}\right) \tag{5.48}
\end{equation*}
$$

Furthermore, it turns out to be practical to introduce the quantity named friction velocity, which is defined as:

$$
\begin{equation*}
U_{F} \equiv \sqrt{\frac{\tau_{o}}{\rho}} \tag{5.49}
\end{equation*}
$$

### 5.4.1 Smooth Bottom

For flows with a smooth bottom the velocity profile near the wall can be calculated by use of the mixing length model. Equation (5.44) with $U_{2}=0$ reads:

$$
\begin{equation*}
\frac{\tau}{\rho}=\left(\nu+\nu_{T}\right) \frac{\partial U_{1}}{\partial x_{2}} \tag{5.50}
\end{equation*}
$$

Substitution of equation (5.48), the expression for $U_{F}$ and equation (5.43) give:

$$
\begin{align*}
U_{F}^{2}\left(1-\frac{x_{2}}{D}\right) & =\left(\nu+\nu_{T}\right) \frac{\partial U_{1}}{\partial x_{2}} \\
& =\left(\nu+\ell_{b}^{2}\left|\frac{\partial U_{1}}{\partial x_{2}}\right|\right) \frac{\partial U_{1}}{\partial x_{2}} \\
& =\nu \frac{\partial U_{1}}{\partial x_{2}}+\ell_{b}^{2}\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \frac{\partial U_{1}}{\partial x_{2}} \tag{5.51}
\end{align*}
$$

Close to the bottom we have $\ell_{b}=\kappa x_{2}$ and $x_{2} / D \ll 1$, which after substitution into equation (5.51) gives:

$$
\begin{equation*}
U_{F}^{2} \approx \nu \frac{\partial U_{1}}{\partial x_{2}}+\left(\kappa x_{2}\right)^{2}\left(\frac{\partial U_{1}}{\partial x_{2}}\right)^{2} \tag{5.52}
\end{equation*}
$$

Even though $\nu$ is a very small quantity, the first term on the right-hand side will always be dominant if we are close enough to the bottom. This corresponds to $\tau^{v i s c} \gg \tau^{t u r b}$ very close to the bottom. If we ignore the turbulent stresses, equation (5.52) is reduced to:

$$
\begin{equation*}
U_{F}^{2}=\nu \frac{\partial U_{1}}{\partial x_{2}} \tag{5.53}
\end{equation*}
$$

which, after usage of the boundary condition $U_{1}=0$ for $x_{2}=0$, gives:

$$
\begin{equation*}
\frac{U_{1}}{U_{F}}=\frac{U_{F}}{\nu} x_{2} \tag{5.54}
\end{equation*}
$$

The velocity profile of the mean flow close to the bottom is seen to be linear, and the flow turns out to be mainly laminar. Fluctuations might occur, but as the viscous stresses are dominant, such fluctuations do not grow to real turbulence. This flow domain is often named the viscous sub-layer.
However, we need not go particularly far away from the bottom before $\nu_{T} \gg \nu$, and the turbulent stresses become dominant. In that case equation (5.51) is reduced to:

$$
U_{F}^{2}=\left(\kappa x_{2}\right)^{2}\left(\frac{\partial U_{1}}{\partial x_{2}}\right)^{2}
$$

as we still have $x_{2} / D \ll 1$. Because $U_{1}=U_{1}\left(x_{2}\right)$, the equation can be rewritten to:

$$
\begin{equation*}
d U_{1}=U_{F} \frac{1}{\kappa} \frac{d x_{2}}{x_{2}} \tag{5.55}
\end{equation*}
$$

which, after integration, reads:

$$
\begin{equation*}
\frac{U_{1}}{U_{F}}=\frac{1}{\kappa} \ln x_{2}+K_{1} \tag{5.56}
\end{equation*}
$$

The velocity profile is seen to be logarithmic, but we are not able to determine the constant $K_{1}$ by use of mixing length theory. To do so, experiments or more advanced turbulence modelling is necessary. In Fig. 5.11, measured data from experiments with full pipes are shown. The drawing is based on the nondimensional distance $\left(U_{F} x_{2}\right) / \nu$ from the wall. As the data points in the semilogarithmic coordinate system fit a straight line excellently, except close to the wall, the theoretically logarithmic velocity profile is confirmed.


Figure 5.11: Smooth wall. Velocity profiles in pipes measured outside the viscous sub-layer.

A fit of the data (for $U_{F} x_{2} / \nu>50$ ) to a straight line in the semi-logarithmic coordinate system gives:

$$
\begin{equation*}
\frac{U_{1}}{U_{F}}=5.7+2.45 \ln \left(\frac{U_{F}}{\nu} x_{2}\right) \tag{5.57}
\end{equation*}
$$

According to equation (5.56) the factor of 2.45 has to be equal to $1 / \kappa$, which gives $\kappa \approx 0.41$.

The deviation of the points from the straight line close to the wall in Fig. 5.11 is caused by the transition from a logarithmic profile to a linear profile within the viscous sub-layer. The linear profile, shown with the broken line in Fig. 5.11, is curved in a semi-logarithmic coordinate system. In practice we use the linear profile, equation (5.54), up to the intersection point with the logarithmic profile, equation (5.57), and the logarithmic profile above that point. See Fig. 5.12.

The thickness of the viscous sub-layer, $\delta$, is thus defined as the distance from the wall to the intersection point of the two types of profile, i.e.

$$
\begin{equation*}
\frac{U_{F}}{\nu} \delta=5.7+2.45 \ln \left(\frac{U_{F}}{\nu} \delta\right) \tag{5.58}
\end{equation*}
$$



Figure 5.12: Smooth wall. Velocity profile close to wall.
which solved with respect to $\delta$ gives:

$$
\begin{equation*}
\delta=\frac{11.7 \nu}{U_{F}} \tag{5.59}
\end{equation*}
$$

In most cases $\delta$ is a very small quantity, and it should be noticed that $\delta$ decreases with increasing values of $U_{F}$.

## Example : Thickness of a viscous sub-layer

Consider a channel with constant water depth $D=1 \mathrm{~m}$ and slope $\beta=10^{-3}$. According to equation (5.47) we have $\tau_{o}=10^{3} \cdot 9.81 \cdot 1$. $\sin 10^{-3}=9.81 \mathrm{~N} / \mathrm{m}^{2}$. This gives $U_{F}=\sqrt{9.81 / 10^{3}}=0.099 \mathrm{~m} / \mathrm{s}$, and, accordingly the thickness of the viscous sub-layer is:

$$
\delta=\left(11.7 \cdot 10^{-6}\right) / 0.099=1.2 \cdot 10^{-4} \mathrm{~m}=0.12 \mathrm{~mm}
$$

### 5.4.2 Rough Bottom

In practice it is impossible to obtain a completely smooth wall from a physical point of view. Even if the surface looks smooth to the naked eye, a look on the surface with a microscope will reveal roughness elements on the surface, and in the following the characteristic size of these roughness elements is denoted $k$. While $\delta \gg k$, i.e. the roughness elements are small compared to the thickness of the viscous sub-layer, the roughness has no influence and the velocity distribution corresponding to smooth wall is valid.

However, from equation (5.59) it is seen that $\delta$ is inversely proportional to $U_{F}$, and if $U_{F}$ becomes large enough, $\delta$ becomes comparable to $k$, i.e. the largest roughness elements are no longer covered by the sub-layer.

In that case the shear stress on the wall, $\tau_{o}$, is gradually changing from viscous shear stress to drag forces on the individual roughness elements, where the drag force on an element is due to excess pressure on the upstream side of the element and low pressure on the downstream side. Formally it can be expressed as a shear stress in this way:

$$
\tau_{o}=\frac{F_{\text {wall }}}{A_{\text {wall }}}=\frac{\sum F_{\text {element }}}{A_{\text {wall }}}=\frac{\sum c_{D} \cdot \frac{1}{2} \rho v^{2} A_{\text {element }}}{A_{\text {wall }}}
$$

where $c_{D}$ is a drag coefficient, $A_{\text {element }}$ is the area of an element projected on a plane perpendicular to the flow direction and $v$ is a reference velocity like e.g. the velocity immediately above the top of the roughness elements.

The size of the gradient $\partial U_{1} / \partial x_{2}$ is normally so large immediately above the top of the roughness elements, that $\tau^{v i s c}$ is a significant part of the total shear stress $\tau$ there. However, the importance of the viscous stresses is only significant at points very close to the wall, and normally it is assumed that $\tau \approx \tau^{t u r b}$, when the distance to the top of the elements is of the same order of magnitude as $k$.

In the domain (approximately $1 / 10$ of the depth or radius), where $\tau \approx \tau^{t u r b}$ and the mixing length is given by $\ell_{b}=\kappa x_{2}$, calculations similar to the calculations made for a smooth wall give:

$$
\begin{equation*}
\frac{U_{1}}{U_{F}}=\frac{1}{\kappa} \ln x_{2}+K_{2} \tag{5.60}
\end{equation*}
$$

Again the velocity profile is logarithmic, and again we must rely on experiments in order to determine the integration constant $K_{2}$.

In Fig. 5.13 measured data from experiments with full-flowing pipes are shown. The value of $k$ for the roughness elements is the so-called Nikuradse sand roughness (or equivalent sand roughness), which is the diameter of sand grains (glued to the wall) that gives the same shear stress on the wall as the actual roughness do. Some typical values are given in the table below, but notice that coatings building up over time on plastic or steel surfaces can increase $k$ by a factor 3 to 5 !

| Wall material | equivalent sand roughness, $k$ <br> $m m$ |
| :--- | :---: |
| Plastic | 0.02 |
| Steel | 0.1 |
| Concrete | 1 |
| Soil (channel) | 10 |

Table 5.1: Typical values of equivalent sand roughness.


Figure 5.13: Rough wall. Measured velocity profiles.

The drawing is based on the non-dimensional distance $x_{2} / k$ from the wall. In case of a rough wall it is of course difficult to define the location of $x_{2}=0$. In practice it is done during the fit of the points to a straight line. The location of $x_{2}=0$ is simply varied systematically until the best possible fit to a straight line is obtained. In most cases is $x_{2}=0$ situated close to the peaks of the roughness elements, but fortunately the exact placement is not very important in practice. As the data points in the semi-logarithmic coordinate system fit a straight line excellently, the theoretically logarithmic velocity profile is confirmed. The best fit of the the data to a straight line in the semi-logarithmic coordinate system reads:

$$
\begin{equation*}
\frac{U_{1}}{U_{F}}=8.6+2.45 \ln \frac{x_{2}}{k} \tag{5.61}
\end{equation*}
$$

This equation can also be expressed as:

$$
\begin{equation*}
\frac{U_{1}}{U_{F}}=2.45 \ln \frac{x_{2}}{k / 33} \tag{5.62}
\end{equation*}
$$

The expression predicts $U_{1}=0$ at $x_{2}=k / 33$, i.e. close to the top of the roughness elements. The equation is in principle only valid in the domain, where $\ell_{b}=\kappa x_{2}$. In practice the deviations between the actual velocity profile and the profile predicted by equation (5.62) are so small that equation (5.62) is often
used in the whole range from the bottom to the surface in a channel or to the centre of the pipe in case of pipe flow.

### 5.5 Considerations on energy in turbulent flow

The turbulence in a uniform, steady turbulent flow, e.g. a pipe flow, is named preserved turbulence, as the three standard deviations of the turbulent fluctuations at a given point keep their size and distribution constant with time. This is not always the case. For example, if turbulence is created by the motion of a grid through a stagnant fluid, this turbulence will fade away as time goes by.

In pipe flow the turbulence at a given point can be preserved, because energy is steadily transferred from the mean flow to turbulence (in order to keep the main flow steady, we must therefore submit energy to the main flow from e.g. a pump).

Below it is attempted to explain how turbulent energy is produced in uniform, steady main flow.

The definition of turbulent kinetic energy, $k$, per unit mass reads:

$$
\begin{equation*}
k=\frac{1}{2}\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)=\frac{1}{2} u_{i} u_{i} \tag{5.63}
\end{equation*}
$$

i.e. $k$ is the kinetic energy due to the fluctuations.

The total kinetic energy per unit mass of the fluid is $1 / 2 v^{2}$, and smoothing yields:

$$
\begin{align*}
\frac{1}{2} \overline{v^{2}} & =\frac{1}{2} \overline{v_{i} v_{i}}=\frac{1}{2} \overline{\left(U_{i}+u_{i}\right)\left(U_{i}+u_{i}\right)}=\frac{1}{2} \overline{U_{i} U_{i}+u_{i} u_{i}+2 U_{i} u_{i}} \\
& =\frac{1}{2} U_{i}^{2}+\frac{1}{2} \overline{u_{i} u_{i}}=\frac{1}{2} U_{i}^{2}+\bar{k} \tag{5.64}
\end{align*}
$$

It is seen that the total kinetic energy after smoothing is the sum of the kinetic energy of the mean flow and the smoothed turbulent kinetic energy.

Consider the change of $k$, when, due to velocity fluctuations, a fluid particle is moving across the streamlines of a mean flow.

Due to $u_{2}$ the fluid particle moves from the level $x_{2}=a$ to the level $x_{2}=b$ during the time $\Delta t$. Thus, the distance between the two positions is:

$$
\Delta x_{2}=b-a=u_{2} \Delta t
$$



Figure 5.14: Production of turbulent kinetic energy.

See Fig. 5.14. If the action of the external forces is neglected, this change in position is seen to correspond to a change in $k$. We have:

$$
\begin{aligned}
v_{1}(a) & \approx v_{1}(b) \quad \Rightarrow \\
U_{1}(a)+u_{1}(a) & =U_{1}(b)+u_{1}(b) \quad \Rightarrow \\
U_{1}(a)+u_{1}(a) & =U_{1}(a)+\frac{\partial U_{1}}{\partial x_{2}} \cdot \Delta x_{2}+u_{1}(b) \quad \Rightarrow \\
u_{1}(a) & =\frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t+u_{1}(b)
\end{aligned}
$$

Thus at $x_{2}=b$ the size of the $x_{1}$-component of $u_{1}$ is:

$$
u_{1}(b)=u_{1}(a)-\frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t
$$

The two other components of fluctuations are not changed, because the corresponding two components of the mean flow are zero at both levels.

The corresponding change of the of the turbulent kinetic energy of the particle per unit volume during the time $\Delta t$ becomes:

$$
\begin{aligned}
\rho\left(k_{b}-k_{a}\right) & =\frac{\rho}{2}\left[u_{1}(b)^{2}+u_{2}(a)^{2}+u_{3}(a)^{2}\right]-\frac{\rho}{2}\left[u_{1}(a)^{2}+u_{2}(a)^{2}+u_{3}(a)^{2}\right] \\
& =\frac{\rho}{2}\left[u_{1}(a)-\frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t\right]^{2}-\frac{\rho}{2} u_{1}(a)^{2} \\
& =\frac{\rho}{2}\left[u_{1}(a)^{2}+\left(\frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t\right)^{2}-2 u_{1}(a) \frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t\right]-\frac{\rho}{2} u_{1}(a)^{2} \\
& =\frac{\rho}{2}\left[\left(\frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t\right)^{2}-2 u_{1}(a) \frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2} \Delta t\right]
\end{aligned}
$$

or, after division by $\Delta t$ :

$$
\rho \frac{k_{b}-k_{a}}{\Delta t}=\rho \frac{\Delta k}{\Delta t}=\frac{\rho}{2}\left(\frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2}\right)^{2} \Delta t-\rho u_{1}(a) \frac{\partial U_{1}}{\partial x_{2}} \cdot u_{2}
$$

For $\Delta t \rightarrow 0$ this expression reads:

$$
\rho \frac{d k}{d t}=-\rho u_{1} u_{2} \frac{\partial U_{1}}{\partial x_{2}}
$$

Therefore, the smoothed rate of change of the turbulent kinetic energy per unit volume is:

$$
\begin{equation*}
\rho \frac{d \bar{k}}{d t}=-\rho \overline{u_{1} u_{2}} \frac{\partial U_{1}}{\partial x_{2}} \tag{5.65}
\end{equation*}
$$

In fully developed turbulence the shear stress is identical to the Reynolds stress, i.e. $\quad \tau_{21}=\tau_{21}^{t u r b}=-\rho \overline{u_{1} u_{2}}$, and the right-hand side of equation (5.65) can be written:

$$
\begin{equation*}
\tau_{21} \frac{\partial U_{1}}{\partial x_{2}} \tag{5.66}
\end{equation*}
$$

As both terms in this expression are positive, we say the expression corresponds to production of turbulent energy, as $\bar{k}$ increases during the shift in position. The expression can also be interpreted as the work done on a unit cube, i.e. per unit volume of the fluid. In turbulent flow the work of the shear stresses is initially transformed into turbulent energy in contrast to laminar flow, where the work done on a particle is initially transformed into heat. The turbulent kinetic energy is not transformed into heat in the large eddies, as closer investigations have shown that the turbulent energy is transformed to still smaller eddies, and the main transformation into heat, i.e. dissipation, takes place in the smallest eddies. The dissipation per unit mass is again denoted $\epsilon$.

From equation (5.65) it is seen that the production of turbulent energy is largest close to the wall, as both $\tau$ and the velocity gradient are largest there. It is also seen that the production is 0 , where $\tau$ or the velocity gradient is 0 as e.g. at the pipe axis or the free surface in channel flow.

From experiments and dimensional analysis it is known that the smoothed dissipation per unit mass can be expressed as:

$$
\begin{equation*}
\bar{\epsilon}=A \frac{\bar{k}^{\frac{3}{2}}}{\ell_{d}} \tag{5.67}
\end{equation*}
$$

where $A$ is a non-dimensional factor, and $\ell_{d}$ is a measure for the size of the eddies. Names as dissipation length or length scale of turbulence are often used for $\ell_{d}$.


Figure 5.15: Energy balance of turbulent energy, $\bar{k}$, in a pipe flow. Roman numerals refer to the terms of equation (7.14).

It is possible to show that $A \approx 0.09$, and that $\ell_{d}$ has the same order of magnitude as the mixing length $\ell_{b}$, see chapter 7 .

From equation (5.67) it is seen that dissipation takes place at all points, where $\bar{k}>0$. As $\bar{k}>0$ at the centerline of a pipe, where the production is zero, a transport of energy from the wall towards the centerline must take place, and because this direction is perpendicular to the streamlines of the mean flow, it is diffusive transport only. Finally, a closer examination shows that the work done by the fluctuations of the pressure also creates a transport of energy towards the centerline. However, this contribution is included in the total diffusion, so the transport by pressure is shown only by a broken line in Fig. 5.15.

In Fig. 5.15 size and distribution of the above-mentioned contributions in a pipe flow are depicted, and the equation describing these contributions is discussed in chapter 7 .

## Chapter 6

## Turbulent Boundary Layers

All boundary layers are turbulent if the Reynolds number is sufficiently large.
The turbulent eddies cause the dividing surface between potential flow and boundary layer to move irregularly, and these motions have an effect on the potential flow. Even though the potential flow upstream of the boundary layer is steady, the motion of the dividing surface causes the potential flow to be weakly unsteady near the boundary layer.

If the mean flow in a turbulent boundary layer is considered, the same characteristics are found for laminar and turbulent boundary layers, i.e. gradients of velocity and pressure are much larger perpendicular to the flow direction than in the flow direction. Consequently, part of the terms in the equations of motion can be discarded.

Even though the thickness of the turbulent boundary layer increases along the plate (in the $x_{1}$-direction), and continuity therefore gives $U_{2} \neq 0$, we normally find $U_{2} \ll U_{1}$. Thus, the streamlines of the mean flow are also nearly parallel.

### 6.1 Flow Equations for Turbulent Boundary Layers

The $x_{2}$-component of the Navier-Stokes equation for turbulent flow, equation (5.27), reads:

$$
\begin{align*}
\rho \frac{d U_{2}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{2}} & +\frac{\partial}{\partial x_{1}}\left(\mu\left(\frac{\partial U_{2}}{\partial x_{1}}+\frac{\partial U_{1}}{\partial x_{2}}\right)-\rho \overline{u_{2} u_{1}}\right) \\
& +\frac{\partial}{\partial x_{2}}\left(\mu\left(\frac{\partial U_{2}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{2}}\right)-\rho \overline{u_{2} u_{2}}\right) \tag{6.1}
\end{align*}
$$

As $U_{2} \approx 0$ everywhere, the accelerations of the mean flow in the $x_{2}$-direction are also small, and because the gradients in the $x_{1}$-direction are small compared to the gradients in the $x_{2}$-direction, equation (6.1) can be reduced to:

$$
\begin{equation*}
\frac{\partial}{\partial x_{2}}\left(\overline{-p^{+}}-\rho \overline{u_{2} u_{2}}\right) \approx 0 \tag{6.2}
\end{equation*}
$$

From equation (6.2) we find for a section perpendicular to the plate:

$$
\begin{equation*}
\overline{p^{+}}=-\rho \overline{u_{2} u_{2}}+K\left(x_{1}\right) \tag{6.3}
\end{equation*}
$$

If the dynamic pressure in the potential flow is denoted $p_{o}^{+}$, equation (6.3) reads:

$$
\begin{equation*}
\overline{p^{+}}=p_{o}^{+}-\rho \overline{u_{2} u_{1}} \tag{6.4}
\end{equation*}
$$

as $K\left(x_{1}\right)=p_{o}^{+}+\left.\rho \overline{u_{2} u_{2}}\right|_{x_{2}=\delta}=p_{o}^{+}$, because $\overline{u_{2} u_{2}}=0$ at the transition to potential flow.

Normally we have $-\rho \overline{u_{2} u_{2}} \ll \overline{p^{+}}$, and this is the case also for turbulent boundary layers. The dynamic pressure within the boundary layer is therefore determined by the dynamic pressure in the potential flow, i.e.

$$
\begin{equation*}
\overline{p^{+}}=p_{o}^{+} \tag{6.5}
\end{equation*}
$$

The component of the Navier-Stokes equation in the flow direction reads:

$$
\begin{align*}
\rho \frac{d U_{1}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{1}} & +\frac{\partial}{\partial x_{1}}\left(\mu\left(\frac{\partial U_{1}}{\partial x_{1}}+\frac{\partial U_{1}}{\partial x_{1}}\right)-\rho \overline{u_{1} u_{1}}\right) \\
& +\frac{\partial}{\partial x_{2}}\left(\mu\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right)-\rho \overline{u_{1} u_{2}}\right) \tag{6.6}
\end{align*}
$$

Again it is used that gradients in the $x_{1}$-direction are much smaller than gradients in the $x_{2}$-direction, so equation (6.6) can be reduced to:

$$
\begin{equation*}
\rho \frac{d U_{1}}{d t}=-\frac{\partial p_{o}^{+}}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\left(\mu\left(\frac{\partial U_{1}}{\partial x_{2}}-\frac{\partial U_{2}}{\partial x_{1}}\right)-\rho \overline{u_{1} u_{2}}\right) \tag{6.7}
\end{equation*}
$$

As shown in section 5.2 , the quantity in the last parenthesis is equal to the shear stress $\bar{\tau}_{21}$, and the flow equation can also be written as:

$$
\begin{equation*}
\rho \frac{d U_{1}}{d t}=-\frac{\partial p_{o}^{+}}{\partial x_{1}}+\frac{\partial \bar{\tau}_{21}}{\partial x_{2}} \tag{6.8}
\end{equation*}
$$

If a particle with unit volume is considered in the mean flow, equation (6.8) can be interpreted as an ordinary Newton's 2nd law for the particle, where the Reynolds stresses are part of the shear stresses.

### 6.2 Momentum Equation for Turbulent Boundary layers

After smoothing of the ordinary momentum equation for boundary layers, equation (4.34), reads:

$$
\begin{equation*}
\int_{0}^{\delta} \rho \frac{\partial U_{1}}{\partial t} d x_{2}+\frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho U_{1}\left(U_{1}-v_{o}\right) d x_{2}=-\delta \frac{\partial p_{o}^{+}}{\partial x_{1}}-\tau_{o} \tag{6.9}
\end{equation*}
$$

Notice that a finite value of the boundary layer thickness is assumed, and for convenience the smoothed value of the wall shear stress is simply denoted $\tau_{o}$ in the following. In the second integral a small term has been neglected, as we normally find $\overline{u_{1} u_{1}} \leq 0.01 \cdot U_{1}^{2}$ for flows having the same character as boundary layer flow.

Equation (6.9) is named the momentum equation for turbulent boundary layers. Usage of this equation makes it rather simple to find approximate values of the thickness of the boundary layer after assessment of a velocity profile and a relation between the velocity outside the layer and the wall shear stress. It is, however, not possible to express directly the smoothed wall shear stress by the assessed velocity profile, as shear stress in a turbulent flow consists of both smoothed viscous shear stresses and Reynolds' stresses.

Measurements of velocity profiles in turbulent boundary layers have shown the existence of a domain close to the wall, where the velocity profiles with good approximation can be described as shown in section 5.4.

Consider e.g. the velocity profile close to a rough wall:

$$
\begin{equation*}
\frac{U_{1}\left(x_{2}\right)}{U_{F}}=2.45 \ln \frac{x_{2}}{k / 33} \tag{6.10}
\end{equation*}
$$

where the friction velocity $U_{F}$ is defined as:

$$
\begin{equation*}
U_{F}=\sqrt{\frac{\tau_{o}}{\rho}} \tag{6.11}
\end{equation*}
$$

If we consider a point at the top side of the smoothed boundary layer, equation (6.10) gives this relation between the friction velocity and the velocity outside the boundary layer, $v_{o}$ :

$$
\begin{equation*}
\frac{v_{o}}{U_{F}}=2.45 \ln \frac{\delta}{k / 33} \tag{6.12}
\end{equation*}
$$

After substitution of equation (6.11) the relation between $v_{o}$ and $\tau_{o}$ for a rough wall reads:

$$
\begin{equation*}
\frac{v_{o}}{\sqrt{\frac{\tau_{o}}{\rho}}}=2.45 \ln \frac{\delta}{k / 33} \tag{6.13}
\end{equation*}
$$

If this expression and equation (6.10) are substituted into the momentum equation, we get a differential equation. Unfortunately no analytical solution exists, as $\delta$ appears on the right-hand side of equation (6.13).

A numerical solution of the momentum equation based on equation (6.13) is described in Fredsøe (1990). Below a simpler method of solution is described, which is based on the same assumptions, i.e. steady, uniform mean flow.

If we consider the boundary layer on a pipe wall or on the bottom of a channel, the thickness of such a boundary layer increases until the top of the boundary layer reaches the axis of the pipe or the free surface in the channel. Downstream of this section the flow becomes an ordinary turbulent flow. Uniform, turbulent flow in pipes or channels may therefore be considered as boundary layer flow which fills up the entire cross-section.

From dimensional analysis of uniform flow in pipes or channels it is known that the relation between the average velocity (in the mean flow) over the crosssectional area, $A$, and the wall shear stress reads:

$$
\begin{equation*}
\tau_{o}=f \cdot \frac{1}{2} \rho V^{2} \tag{6.14}
\end{equation*}
$$

where $f$ is named the friction factor, and $V$ is defined as:

$$
\begin{equation*}
V=\frac{1}{A} \int_{A} U_{1} d A \tag{6.15}
\end{equation*}
$$

$A$ is the area through which the fluid is flowing. As shown in basic books on fluid mechanics it is practical to introduce the quantity hydraulic radius, $R$, defined as:

$$
\begin{equation*}
R=\frac{A}{P} \tag{6.16}
\end{equation*}
$$

where $P$ is the length of the wetted part of the perimeter. If $R$ is chosen as the characteristic size of the cross-section, measurements show that the friction factor is given by Colebrook \& White's formula:

$$
\begin{equation*}
\sqrt{\frac{2}{f}}=6.4-2.45 \ln \left(\frac{k}{R}+\frac{4.7}{R e \sqrt{f}}\right) \tag{6.17}
\end{equation*}
$$

where $k$ is the equivalent sand roughness, and $R e$ is the Reynolds number defined as:

$$
\begin{equation*}
R e=\frac{V R}{\nu} \tag{6.18}
\end{equation*}
$$

Equation (6.17) is valid for all steady, uniform turbulent flows, but it is implicit. In order to avoid an iterative solution of this implicit equation, $f$ can be approximated by:

$$
\begin{equation*}
f=\frac{0.341}{\left[\ln \left(\frac{k}{14.8 R}+\frac{1.65}{R e^{0.9}}\right)\right]^{2}} \tag{6.19}
\end{equation*}
$$

Notice that this expression is only valid for $4 \cdot 10^{-5}<k / R<0.08$ and $1000<$ $R e<2.5 \cdot 10^{7}$.

For a smooth wall equation (6.17) is approximated by:

$$
\begin{equation*}
f=\frac{0.056}{\sqrt[4]{R e}} \quad \text { for } \quad R e<31000 \tag{6.20}
\end{equation*}
$$

and for a rough wall the approximation reads:

$$
\begin{equation*}
\sqrt{\frac{2}{f}}=8.1\left(\frac{R}{k}\right)^{\frac{1}{6}} \quad \text { for } \quad 0.0033<k / R<0.21 \tag{6.21}
\end{equation*}
$$

With respect to the assessment of the velocity profile in turbulent boundary layers, an often adopted expression reads:

$$
\begin{equation*}
\frac{U_{1}\left(x_{2}\right)}{v_{o}}=\left(\frac{x_{2}}{\delta}\right)^{\frac{1}{n}} \tag{6.22}
\end{equation*}
$$

where the magnitude of $n$ slightly depends on the type of flow. In many cases $n=7$ is a good approximation, and this value is also used here. It has been shown earlier that the values of $\delta$ obtained by the momentum equation are rather
insensitive to the shape of the velocity profile assessed. Thus, the mean velocity becomes:

$$
\begin{equation*}
V=\frac{1}{\delta} \int_{0}^{\delta} v_{o}\left(\frac{x_{2}}{\delta}\right)^{\frac{1}{7}} d x_{2}=\frac{\delta}{\delta} \int_{0}^{\delta} v_{o}\left(\frac{x_{2}}{\delta}\right)^{\frac{1}{7}} d\left(\frac{x_{2}}{\delta}\right)=\frac{7}{8} v_{o} \tag{6.23}
\end{equation*}
$$

With these assumptions an analytically solution of the momentum equation for turbulent boundary layers becomes possible.

### 6.2.1 Turbulent Boundary Layer on a Smooth Plate in Uniform Flow

Assume that $v_{o}=$ constant in a uniform flow, i.e. the potential flow is steady. Bernoulli's generalized equation gives $p^{+}=$constant in the potential flow, and thus the smoothed momentum equation for the boundary layer reads:

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}} \int_{0}^{\delta} \rho U_{1}\left(U_{1}-v_{o}\right) d x_{2}=-\tau_{o} \tag{6.24}
\end{equation*}
$$

Furthermore similar velocity profiles are expected, based on the experience obtained from laminar boundary layers. Substitution of $U_{1}\left(x_{2}\right)$, equation (6.22), into the momentum equation, gives:

$$
\left.\rho v_{o}^{2} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta}\left[\left(\frac{x_{2}}{\delta}\right)^{\frac{2}{7}}-\left(\frac{x_{2}}{\delta}\right)^{\frac{1}{7}}\right)\right] d x_{2}=-\rho v_{o}^{2} \frac{\partial}{\partial x_{1}}\left(\frac{7}{72} \delta\right)=-\tau_{o}
$$

or

$$
\begin{equation*}
\rho v_{o}^{2} \frac{7}{72} \frac{\partial \delta}{\partial x_{1}}=\tau_{o} \tag{6.25}
\end{equation*}
$$

As a smooth wall is assumed, $f$ is given by equation (6.20):

$$
f=\frac{0.056}{\sqrt[4]{R e}}=\frac{0.056}{\sqrt[4]{\frac{V R}{\nu}}}=\frac{0.056}{\sqrt[4]{\frac{\frac{7}{8} v_{o} \delta}{\nu}}}
$$

as $R=\delta$ for the actual boundary layer. Substitution of this expression for $f$ into equation (6.14), where $V=7 / 8 v_{o}$, gives:

$$
\begin{equation*}
\tau_{o}=\frac{0.056}{\sqrt[4]{\frac{7}{8} v_{o} \delta}} \frac{1}{\nu} \cdot \frac{7}{2} \rho\left(\frac{7}{8} v_{o}\right)^{2}=0.022 \rho v_{o}^{2}\left(\frac{v_{o} \delta}{\nu}\right)^{-\frac{1}{4}} \tag{6.26}
\end{equation*}
$$

As $\delta$ only depends on $x_{1}$, equation (6.25) is an ordinary differential equation, which after substitution of equation (6.26) reads:

$$
\begin{equation*}
\frac{7}{72} \frac{d \delta}{d x_{1}}=0.022\left(\frac{v_{o} \delta}{\nu}\right)^{-\frac{1}{4}} \tag{6.27}
\end{equation*}
$$

Integration gives

$$
\begin{equation*}
\frac{\delta^{\frac{5}{4}}}{\frac{5}{4}}=0.022 \cdot \frac{72}{7}\left(\frac{v_{o}}{\nu}\right)^{-\frac{1}{4}} \cdot x_{1}+C \tag{6.28}
\end{equation*}
$$

where $C$ is a constant.


Figure 6.1: Sketch of the transition between laminar and turbulent boundary layer.

To determine $C$ is not trivial, as the boundary layer is laminar close to the edge of the plate, see Fig. 6.1. At a certain distance from the edge the boundary layer becomes turbulent, and we will assume that the thickness of the laminar layer is equal to the thickness of the turbulent layer at a point of transition, even though the transition in fact takes place over a finite reach. In literature it is often stated that the transition takes place for

$$
\begin{equation*}
R e_{x_{1}} \approx \frac{v_{o} x_{1}}{\nu} \approx 3.5 \cdot 10^{5} \tag{6.29}
\end{equation*}
$$

but this value is only valid if the potential flow is nearly perfectly uniform and the plate is very smooth.

In practice even small disturbances in the potential flow or roughness elements on the plate will lead to a transition to turbulent boundary flow for

$$
R e=\frac{V R}{\nu} \approx \frac{v_{o} \delta}{\nu} \approx 600
$$

as it is also seen for ordinary pipe or channel flows. If we use the approximate expression for $\delta$ in a laminar boundary layer, i.e.

$$
\delta_{l a m}=4.8 \sqrt{\frac{\nu x_{1}}{v_{o}}}
$$

it is seen that transition takes place at $x_{1} \approx \frac{0.020}{v_{o}}$, if $\nu=1.3 \cdot 10^{-6} \mathrm{~m}^{2} / \mathrm{s}(\sim$ water). For $v_{o}=1 \mathrm{~m} / \mathrm{s}$ the transition takes place a few centimeters from the leading edge, and the thickness of the boundary layer is only

$$
\delta_{l a m}=4.8 \sqrt{1.3 \cdot 10^{-6} \cdot 0.020 / 1}=0.00078 \mathrm{~m} \approx 1 \mathrm{~mm}
$$

Consequently, it is often assumed that the boundary condition for the turbulent layer is $\delta=0$ for $x_{1}=0$, giving $C=0$ in equation (6.28). Thus the thickness of a turbulent boundary layer on a smooth plate reads:

$$
\begin{equation*}
\delta=0.37\left(\frac{\nu}{v_{o}}\right)^{\frac{1}{5}} \cdot x_{1}^{\frac{4}{5}} \tag{6.30}
\end{equation*}
$$

Notice that the turbulent boundary layer grows approximately linearly with the distance from the leading edge, whereas the growth of the laminar boundary layer is parabolic only.

If $v_{o}$ is sufficiently increased, any plate surface will change from smooth to rough. For a rough plate the thickness of the turbulent boundary layer also grows almost linearly with the distance from the leading edge.

### 6.3 Free Turbulence

So far we have only considered turbulent flows, where the presence of solid boundaries has been of vital importance for the course of the flow in the entire domain.

As a contrast to that kind of flows, we have flows dominated by so-called free turbulence. This name is used, if the turbulence is due solely to the interaction of fluids with different velocities, and such flows have substantial shear stresses even at large distances from the solid boundaries that created the velocity difference.

In Fig. 6.2 the three most common types of free turbulence are depicted. All three types have in common that the pressure gradients are very small, as pressure gradients are normally due to convection caused by solid boundaries. Furthermore, we only consider the flow domains situated far downstream of the solid boundaries that initiated the turbulence. Within such domains the flows have the same character as boundary layer flow, i.e. gradients across the flow direction are much larger than gradients in the flow direction, and it is also a good approximation to assume similar velocity profiles.


Figure 6.2: Three types of free turbulence: (a) mixing layer, (b) submerged jet, (c) wake behind a body

### 6.3.1 Turbulent two-dimensional, submerged jet

Consider the fluid flow through a slot into a half-space filled with stagnant fluid. The fluid of the jet is identical to the stagnant fluid. If the volume flux through the slot exceeds a certain value, the downstream submerged jet becomes turbulent. As the flow is two-dimensional, the jet is named a two-dimensional jet. In


Figure 6.3: Sketch of flow in two-dimensional jet.
Fig. 6.3 it is depicted, how the velocity profiles of the jet are changing in the flow direction, but notice that it is only a sketch with unprecise dimensions in the two directions. Where the jet meets the stagnant fluid turbulent mixing layers are formed, and the thickness of these layers is growing quickly. At a distance of the same order of magnitude as the width of the slot, the jet is turbulent over the entire cross-section. After that point the velocity profiles are gradually approaching a shape similar to a Gaussian density distribution. At distances
greater than 20-50 times the width of the slot, the velocities are approximately similar, i.e

$$
\begin{equation*}
U_{1}=U_{o} \cdot f\left(\frac{x_{2}}{\delta}\right) \tag{6.31}
\end{equation*}
$$

where $U_{o}\left(x_{1}\right)$ is the maximum velocity in a velocity profile, and $\delta\left(x_{1}\right)$ is half of the total width of the jet. In the following only the domain with similar profiles is considered. Measurements show that the volume flux of the jet is slightly increasing in the flow direction, and thus surrounding fluid is drawn into the jet.

Some insight can be obtained by applying the general momentum equation (4.20), to a closed control surface, where the sections $a$ and $b$ are both perpendicular to the $x_{1}$-axis, see Fig. 6.4. The hight of the control surface perpendicular to the flow plane is 1 , and the width of the control surface is $2 \delta_{b}$. The $x_{1}{ }^{-}$ component of the momentum equation is considered, and we also assume that the volume flux in the slot is constant with time. We note that no momentum in


Figure 6.4: Sketch of control surface.
the $x_{1}$-direction enters the control surface trough the parts of the surface parallel to the $x_{1}$-axis. On the two sections $a$ and $b$ we have pressure forces of equal magnitude, as the pressure is constant in the $x_{1}$-direction due to the absent pressure gradient outside the the jet. Finally, we have no shear stresses outside the jet.

After smoothing of the $x_{1}$-component of the momentum equation, it reads:

$$
\begin{equation*}
-\int_{a} \rho U_{1}^{2} d A+\int_{b} \rho U_{1}^{2} d A=0 \tag{6.32}
\end{equation*}
$$

which, due to symmetry with respect to the $x_{1}$-axis and because $U_{1}=0$ for $x_{2}>\delta_{a}$ at section $a$, can be written:

$$
\begin{equation*}
-2 \int_{0}^{\delta_{a}} \rho U_{1}^{2} d x_{2}+2 \int_{0}^{\delta_{b}} \rho U_{1}^{2} d x_{2}=0 \tag{6.33}
\end{equation*}
$$

From this is concluded that:

$$
\begin{equation*}
\int_{0}^{\delta} U_{1}^{2} d x_{2}=\text { constant } \tag{6.34}
\end{equation*}
$$

for all sections perpendicular to the jet. Substitution of equation (6.31) yields:

$$
\begin{equation*}
\int_{0}^{\delta} U_{o}^{2} f^{2}\left(\frac{x_{2}}{\delta}\right) d x_{2}=\mathrm{constant} \tag{6.35}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{0}^{\delta} U_{o}^{2} \delta f^{2}\left(\frac{x_{2}}{\delta}\right) d\left(\frac{x_{2}}{\delta}\right)=\text { constant } \tag{6.36}
\end{equation*}
$$

With introduction of the substitution:

$$
\begin{equation*}
\zeta=\frac{x_{2}}{\delta} \tag{6.37}
\end{equation*}
$$

equation (6.36) reads:

$$
\begin{equation*}
U_{o}^{2} \delta \int_{0}^{1} f^{2}(\zeta) d \zeta=\text { constant } \tag{6.38}
\end{equation*}
$$

as both $U_{o}$ and $\delta$ only depend on $x_{1}$. As $f(\zeta)$ is the same at all sections, it can be concluded that for all cross-sections of a two-dimensional jet we have:

$$
\begin{equation*}
U_{o}^{2} \delta=\text { constant } \tag{6.39}
\end{equation*}
$$

The way $\delta$ depends on $x_{1}$ can be investigated by use of several methods. The most simple method is dimensional analysis. The dominant forces in the considered part of the jet are solely inertial forces, as the turbulent shear stresses are equivalent to inertial forces. In the domain with similar velocity profiles the width is assumed to depend on 1) the distance from the slot, 2) the density of fluid and 3) a characteristic velocity, i.e.

$$
\begin{equation*}
\delta=g\left(x_{1}, \rho, U_{o}\right) \tag{6.40}
\end{equation*}
$$

As the mass-dimension is present for $\rho$ only and the time-dimension for $U_{o}$ only, the only possible, dimensionally correct expression for the width reads:

$$
\begin{equation*}
\delta=K_{1} x_{1}+K_{2} \tag{6.41}
\end{equation*}
$$

where $K_{1}$ and $K_{2}$ are unknown constants.
By the way, this expression can also be derived under the assumption of similar shear stresses in the cross-sections, i.e.

$$
\begin{equation*}
\bar{\tau}_{21}=\rho U_{o}^{2} f_{1}\left(\frac{x_{2}}{\delta}\right) \tag{6.42}
\end{equation*}
$$



Figure 6.5: Two-dimensional jet. The distance from the slot to a velocity profile is given in the legend. The theoretical curve corresponds to equation (6.46).
and a subsequent substitution of this expression into the flow equations.
Combination of equation (6.39) and equation (6.41) shows that the velocity at the centre of the jet varies principally as:

$$
\begin{equation*}
U_{0} \sim \frac{1}{\sqrt{x_{1}}} \tag{6.43}
\end{equation*}
$$

If more detailed information about velocity profile and shear stress distribution is required, one has to use technical turbulence theory. In a flow along a solid wall, it was seen that the size of the eddies, and thereby $\nu_{T}$, was linearly increasing with the distance to the wall. In the present jet we have no solid boundaries at which the turbulent fluctuation are prevented. Consequently, it is often assumed that $\nu_{T}$ is constant over the entire cross-section of the jet, and a rational and dimensionally correct expression reads:

$$
\begin{equation*}
\nu_{T} \sim \delta U_{o} \tag{6.44}
\end{equation*}
$$

The size of $\delta$ is not well defined, as the velocities near the boundary only asymptotically go towards zero, which is a problem also faced at the determination of the thickness of ordinary boundary layers. For jets, the width of the jet is often estimated by the quantity $\delta_{1 / 2}$, which is defined as the distance from the axis to the point in the cross-section, where $U_{1}=1 / 2 U_{o}$. Measurements have shown that in general we rewrite equation (6.44) to:

$$
\begin{equation*}
\nu_{T}=0.037 \delta_{1 / 2} U_{o} \tag{6.45}
\end{equation*}
$$

If this expression is adopted at the solution of the flow equations and the continuity equation, the result reads:

$$
\begin{equation*}
\frac{U_{1}}{U_{o}}=1-\tanh ^{2}\left(\sigma \frac{x_{2}}{\delta_{1 / 2}}\right) \tag{6.46}
\end{equation*}
$$

where $\sigma$ is a constant, whose magnitude is unknown, but measurements show that $\sigma \simeq 0.88$. In Fig. 6.5 the measured velocity profiles at different distances from the slot and the theoretical expression (6.46) are depicted. The agreement is seen to be excellent except close to the edges of the jet.

## Chapter 7

## Turbulence Models

In most cases it is sufficient to determine the mean flow . However, we cannot solve the Navier-Stokes equation for the mean flow without a so-called turbulence model, which is a relation between $U_{i}$ and $\tau_{j i}^{t u r b}=-\rho \overline{u_{i} u_{j}}$. In technical turbulence theory the Reynolds stresses are modelled by Boussinesq's approximation:

$$
\begin{equation*}
\tau_{j i}^{t u r b}=\rho \nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right) \quad \text { for } \quad i \neq j \tag{7.1}
\end{equation*}
$$

where the eddy viscosity, $\nu_{T}$, is calculated by a suitable turbulence model. Notice that $\nu_{T}$ can be interpreted as a diffusion coefficient, so it is preferable only to apply turbulence models that predict $\nu_{T}>0$ in a domain with turbulent fluctuations.

The eddy viscosity must depend on both the magnitude of the turbulent fluctuations and the size of the eddies, see e.g. equation (5.35). As $\bar{k}$ denotes the smoothed turbulent kinetic energy per unit mass, i.e.

$$
\begin{equation*}
\bar{k}=\frac{1}{2}\left(\overline{u_{1}^{2}}+\overline{u_{2}^{2}}+\overline{u_{3}^{2}}\right)=\frac{1}{2} \overline{u_{i} u_{i}} \tag{7.2}
\end{equation*}
$$

$\sqrt{\bar{k}}$ can be interpreted as a characteristic velocity fluctuation. In order to follow the tradition in the literature on the subject, we shall in the following denote smoothed turbulent kinetic energy by $k$ and smoothed dissipation by $\epsilon$, i.e. we omit the over bar for these quantities.

As the characteristic size of the eddies we shall use the length scale, $\ell_{d}$, which was used at the calculation of the dissipation per unit mass, see equation (5.67). Instead of $\ell_{d}$ we could have adopted the mixing length $\ell_{b}$, but the choice is not very important, as a relation between $\ell_{d}$ and $\ell_{b}$ exists, see section 7.2.

A dimensionally correct expression for $\nu_{T}$ reads:

$$
\begin{equation*}
\nu_{T}=\ell_{d} \sqrt{k} \tag{7.3}
\end{equation*}
$$

This expression predicts increasing values of $\nu_{T}$ for increasing values of $\ell_{d}$ and $k$, as it is expected, and the expression fulfills the requirement $\nu_{T}>0$ at all points, where $k>0$.

In principle, equation (7.3) can be considered as the equation that defines $\ell_{d}$, because both $\nu_{T}$ and $k$ can be measured in an experiment.

It is seen that if equation (7.3) shall be of any practical value, two extra equations determining $\ell_{d}$ and $k$ are necessary.

### 7.1 Mixing Length Model (Algebraic Model or Zero-Equation Model)

Algebraic (or zero equation) turbulence models are not based on equation (7.3). Instead the calculation of $\nu_{T}$ is based on the mixing length $\ell_{b}$ like e.g. in the simple turbulence model set up in chapter 5.3:

$$
\begin{equation*}
\nu_{T}=\ell_{b}^{2}\left|\frac{\partial U_{1}}{\partial x_{2}}\right| \tag{7.4}
\end{equation*}
$$

This model is not based on a characteristic velocity fluctuation, and therefore the mixing length theory erroneously predicts $\nu_{T}=0$, where $\partial U_{i} / \partial x_{j}=0$. Furthermore, it is impossible to calculate the variation $\ell_{b}$ analytically except in the layer close to a wall. In practice the variation af $\ell_{b}$ is found by substitution of measured shear stresses and velocity profiles into equation (5.40), and we hope that the expression obtained has relevance for flows of the same character. Finally, mixing length theory cannot describe convection and diffusion of the turbulent kinetic energy, phenomena which are important in many cases.

Despite these shortcomings, mixing length theory has shown good results at least in flows, where a reasonable estimate for the variation of $\ell_{b}$ exists. Below some examples of flows are given, where the variation of $\ell_{b}$ can be predicted with reasonable accuracy.

- Boundary layer on a wall

In most cases the thickness of the viscous sub-layer can be neglected. The


Figure 7.1: Variation of mixing length in a pipe flow.
simplest and dimensionally correct assumption about $\ell_{b}$, i.e. a variation proportional to the distance to the wall, is adopted for the quarter part of the boundary layer closest to the wall. In the rest of the boundary layer $\ell_{b}$ is assumed constant. Thus, the expression for the mixing length reads:

$$
\begin{array}{rlrr}
\ell_{b} & =\kappa x_{2} & \text { for } & x_{2}<0.25 \delta \\
\ell_{b} & =\kappa 0.25 \delta & \text { for } & 0.25 \delta<x_{2}<\delta \tag{7.5}
\end{array}
$$

where $\kappa=0.41$ is the universal Kármán constant and $\delta=\delta\left(x_{1}\right)$ is the local thickness of the boundary layer. The thickness is here defined as the distance from the wall up to the point in the velocity profile, where $U_{1}=0.99 U_{o}$ and $U_{o}$ is the velocity outside the boundary layer.

- Fully developed turbulence in pipes and channels

From experiments it is known that the variation of $\ell_{b}$ can be expressed as:

$$
\begin{equation*}
\frac{\ell_{b}}{R}=0.14-0.08\left(1-\frac{x_{2}}{R}\right)^{2}-0.06\left(1-\frac{x_{2}}{R}\right)^{4} \tag{7.6}
\end{equation*}
$$

where $R$ is radius of the pipe or one half of the distance between the two walls in a channel, and $x_{2}$ is the distance from the wall. See Fig. 7.1. For channel flow with a free surface, $R$ is the depth of the channel, and $x_{2}$ is the distance from the bottom. Notice that close to a wall, equation (7.6) correctly predicts $\ell_{b}=0.41 x_{2}$, see Fig. 7.1.

- Free turbulence

Experiments have shown that $\ell_{b}$ can be assumed to be constant within the turbulent domain and proportional to the thickness of the turbulent layer

| type of flow | mixing length <br> $\ell_{b}$ |
| :--- | :---: |
| 2-D mixing layer | $0.07 \delta$ |
| 2-D wake | $0.08 \delta$ |
| 2-D jet (into stagnant fluid) | $0.045 \delta$ |
| 3-D jet (into stagnant fluid) | $0.038 \delta$ |

Table 7.1: Expressions for mixing length, free turbulence.
here denoted $\delta$. Some characteristic values for $\delta$ are given in the table below. In the first case, $\delta$ is the distance between the two points, where $U_{1}=0.01 U_{o}$ and $U_{1}=0.99 U_{o}$, respectively, and $U_{o}$ is the velocity of the driving layer. In the last three flows, $\delta$ is the distance between the points where $U_{1}=0.01 U_{o}$, and $U_{o}$ is the velocity of the flow upstream to the wake or the velocity at the line of symmetry of the jet.

### 7.2 The $k$ Model (One-Equation Model)

In order to avoid predictions like $\nu_{T}=0$, we need to base the calculation of the eddy viscosity on $\nu_{T}=\ell_{d} \sqrt{k}$.

We would also like to calculate flows, where the local level of turbulence depends on the flow conditions either upstream or downstream.

If it is possible to establish a reasonable assessment of the variation $\ell_{d}$ (based on e.g. $\ell_{b}$ ), only one extra equation is necessary. The equation that determines $k$ is named the transport equation for $k$. This transport equation describes:

1) how much turbulent kinetic energy is produced
2) how much turbulent kinetic energy is transformed into heat (dissipation)
3) how is the turbulent kinetic energy transported by the mean flow (convection and diffusion)

This transport equation is set up by a multiplication of the three components of the Navier-Stokes equation, equation (5.20), by the corresponding velocity fluctuation followed by adding the three equations into one equation. Expressed by index notation the result reads:

$$
\begin{equation*}
\rho u_{i} \frac{d\left(U_{i}+u_{i}\right)}{d t}=-u_{i} \frac{\partial p^{+}}{\partial x_{i}}+u_{i} \mu \frac{\partial^{2}\left(U_{i}+u_{i}\right)}{\partial x_{j} \partial x_{j}} \tag{7.7}
\end{equation*}
$$

This equation is then smoothed. First the term on the left-hand side is considered.

$$
\begin{align*}
\overline{u_{i} \frac{d\left(U_{i}+u_{i}\right)}{d t}} & =\overline{u_{i} \frac{\partial\left(U_{i}+u_{i}\right)}{\partial t}}+\overline{u_{i}\left(U_{j}+u_{j}\right) \frac{\partial\left(U_{i}+u_{i}\right)}{\partial x_{j}}} \\
& =\overline{u_{i} \frac{\partial u_{i}}{\partial t}}+\overline{u_{i} u_{j}} \frac{\partial U_{i}}{\partial x_{j}}+U_{j} \overline{u_{i} \frac{\partial u_{i}}{\partial x_{j}}}+\overline{u_{i} u_{j} \frac{\partial u_{i}}{\partial x_{j}}} \\
& =\frac{\partial k}{\partial t}+\overline{u_{i} u_{j}} \frac{\partial U_{i}}{\partial x_{j}}+U_{j} \frac{\partial k}{\partial x_{j}}+\overline{u_{j} \frac{\partial k}{\partial x_{j}}} \\
& =\frac{\partial k}{\partial t}+\overline{u_{i} u_{j}} \frac{\partial U_{i}}{\partial x_{j}}+U_{j} \frac{\partial k}{\partial x_{j}}+\overline{\frac{\partial\left(u_{j} k\right)}{\partial x_{j}}} \tag{7.8}
\end{align*}
$$

The continuity equation for the fluctuations:

$$
\begin{equation*}
\frac{\partial u_{j}}{\partial x_{j}}=0 \tag{7.9}
\end{equation*}
$$

has been used to rewrite the last term of equation (7.8). The continuity equation for fluctuations is derived by substitution of the continuity equation for the mean flow, $\partial U_{j} / \partial x_{j}=0$, into the continuity equation for the total velocity, $\partial v_{j} / \partial x_{j}=\partial\left(U_{j}+u_{j}\right) / \partial x_{j}=0$.

Smoothing of equation (7.7) and substitution of equation (7.8) yield:

$$
\begin{equation*}
\rho \frac{\partial k}{\partial t}+\rho U_{j} \frac{\partial k}{\partial x_{j}}+\rho \overline{\frac{\partial\left(u_{j} k\right)}{\partial x_{j}}}+\rho \overline{u_{i} u_{j}} \frac{\partial U_{i}}{\partial x_{j}}=\overline{-\overline{u_{i} \frac{\partial p^{+}}{\partial x_{i}}}+\overline{u_{i} \mu \frac{\partial^{2}\left(u_{i}\right)}{\partial x_{j} \partial x_{j}}} \text { }} \tag{7.10}
\end{equation*}
$$

Equation (7.9) makes it possible to rewrite the first term on the right-hand side to:

$$
\begin{equation*}
\overline{u_{i} \frac{\partial p^{+}}{\partial x_{i}}}=\overline{u_{i} \frac{\partial p^{+}}{\partial x_{i}}}+\overline{p^{+}} \frac{\partial u_{i}}{\partial x_{i}}=\overline{\frac{\partial\left(u_{i} p^{+}\right)}{\partial x_{i}}}=\overline{\frac{\partial\left(u_{j} p^{+}\right)}{\partial x_{j}}} \tag{7.11}
\end{equation*}
$$

and equation (7.10) then reads:

$$
\begin{equation*}
\rho \frac{\partial k}{\partial t}+\rho U_{j} \frac{\partial k}{\partial x_{j}}+\rho \overline{\frac{\partial\left(u_{j} k\right)}{\partial x_{j}}}+\rho \overline{u_{i} u_{j}} \frac{\partial U_{i}}{\partial x_{j}}=-\overline{\frac{\partial\left(u_{j} p^{+}\right)}{\partial x_{j}}}+\overline{u_{i} \mu \frac{\partial^{2}\left(u_{i}\right)}{\partial x_{j} \partial x_{j}}} \tag{7.12}
\end{equation*}
$$

After using the expression for the rate of change, equation (1.19), the definition equation $p^{+}=\overline{p^{+}}+p^{+^{\prime}}$, and $\overline{u_{i}} \cdot \overline{p^{+}}=0$, equation (7.12) finally reads:

$$
\begin{equation*}
\rho \frac{d k}{d t}=-\rho \frac{\partial \overline{\left(u_{j} k\right)}}{\partial x_{j}}-\frac{\partial \overline{\left(u_{j} p^{+^{\prime}}\right)}}{\partial x_{j}}-\rho \overline{u_{i} u_{j}} \frac{\partial U_{i}}{\partial x_{j}}+\mu \overline{u_{i} \frac{\partial^{2}\left(u_{i}\right)}{\partial x_{j} \partial x_{j}}} \tag{7.13}
\end{equation*}
$$

In order to give a physical interpretation of the individual terms in equation (7.13), this equation is applied to a turbulent boundary layer on a plate. It is assumed that the boundary layer is caused by a uniform flow free of turbulence, and we again use that gradients in the direction perpendicular to the flow are dominant. After using these assumptions, equation (7.13) is reduced to:

$$
\begin{equation*}
\rho \frac{d k}{d t}=-\underbrace{\rho \frac{\partial \overline{\left(u_{2} k\right)}}{\partial x_{2}}}_{\text {I }}-\underbrace{\frac{\partial \overline{\left(u_{2} p^{+^{\prime}}\right)}}{\partial x_{2}}}_{\text {II }}-\underbrace{\rho \overline{u_{1} u_{2}} \frac{\partial U_{1}}{\partial x_{2}}}_{\text {III }}+\underbrace{\mu \overline{u_{i} \frac{\partial^{2}\left(u_{i}\right)}{\partial x_{j} \partial x_{j}}}}_{\text {IV }} \tag{7.14}
\end{equation*}
$$

The left-hand side of the equation is the increase of turbulent kinetic energy per unit volume for a fluid particle.

The terms I and II can be interpreted as net diffusion of kinetic energy across the boundary layer. Term I is directly seen to be the net transport of kinetic energy due to the turbulent fluctuations. It is a bit more difficult to interpret term II, but it can be considered as the increase of energy due to work done on the particle by the pressure fluctuations. Both terms are diffusive terms, which is seen by integrating the terms from the plate up to the top of the boundary layer. Outside the boundary layer no turbulent fluctuations are present, and at the plate the velocity fluctuations are zero causing both integrals to be zero. Consequently, these terms do not create any change of the total kinetic energy in the boundary layer, i.e. they only redistribute the energy.

As pointed out in section 5.5, the production of kinetic energy is described by term III.

Consequently, term IV has to be a sink of turbulent kinetic energy, i.e. it must describe the dissipation.

A similar equation can be derived for a uniform pipe flow, and the corresponding variations of the terms (I+II), III and IV are shown in Fig. 5.15. Term II is shown as a broken line.

Equation (7.14) is of no immediate use, as prescriptions of how to calculate the fluctuations are missing. Instead we make the following assumptions:

- Diffusive terms (I and II)

These terms are lumped together into one term, and it is assumed that the diffusion coefficient can be approximated by the diffusion coefficient for momentum, i.e. by $\nu_{T}$, as the diffusion of energy and momentum are caused by the same turbulent fluctuations. Thus, the flux of turbulent energy is expressed in the same way as the flux of momentum, i.e.

$$
\begin{equation*}
-\rho \overline{u_{2} k}-\overline{u_{2} p^{+^{\prime}}}=\rho \nu_{T} \frac{\partial k}{\partial x_{2}} \tag{7.15}
\end{equation*}
$$

- Production term (III)

$$
\begin{equation*}
-\rho \overline{u_{1} u_{2}} \frac{\partial U_{1}}{\partial x_{2}}=\tau_{21}^{t u r b} \cdot \frac{\partial U_{1}}{\partial x_{2}}=\rho \nu_{T}\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right) \frac{\partial U_{1}}{\partial x_{2}} \tag{7.16}
\end{equation*}
$$

- Dissipation term (IV)

The term describes the dissipation per unit volume. This dissipation is equal to the dissipation per unit mass, equation (5.67), multiplied by $\rho$, i.e.

$$
\begin{equation*}
\mu \overline{u_{i} \frac{\partial^{2}\left(u_{i}\right)}{\partial x_{j} \partial x_{j}}}=-\rho A \frac{k^{\frac{3}{2}}}{\ell_{d}} \tag{7.17}
\end{equation*}
$$

In the following example it is shown that $A \approx 0.09$.

Substitution of these expressions into equation (7.14) gives:

$$
\begin{equation*}
\rho \frac{d k}{d t}=\frac{\partial\left(\rho \nu_{T} \frac{\partial k}{\partial x_{2}}\right)}{\partial x_{2}}+\rho \nu_{T}\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right) \frac{\partial U_{1}}{\partial x_{2}}-\rho A \frac{k^{\frac{3}{2}}}{\ell_{d}} \tag{7.18}
\end{equation*}
$$

Finally

$$
\begin{equation*}
\nu_{T}=\ell_{d} \sqrt{k} \tag{7.19}
\end{equation*}
$$

is substituted into equation (7.18), giving the transport equation for $k$ in a boundary layer:

$$
\begin{equation*}
\rho \frac{d k}{d t}=\frac{\partial\left(\rho \ell_{d} \sqrt{k} \frac{\partial k}{\partial x_{2}}\right)}{\partial x_{2}}+\rho \ell_{d} \sqrt{k}\left(\frac{\partial U_{1}}{\partial x_{2}}+\frac{\partial U_{2}}{\partial x_{1}}\right) \frac{\partial U_{1}}{\partial x_{2}}-\rho A \frac{k^{\frac{3}{2}}}{\ell_{d}} \tag{7.20}
\end{equation*}
$$

It is seen that knowledge of the length scale for the turbulent eddies, $\ell_{d}$, is necessary in order to determine $k$. In a one-equation turbulence model an equation for the determination of $\ell_{d}$ is missing, and one has to rely on the best possible guess of the variation of $\ell_{d}$ at the solution of the flow problem. Exactly as we had to do with the mixing length model.

The only improvement obtained by solving an extra equation seems to be that a $k$-model does not predict $\nu_{T}=0$.

In the next example it is shown that a relation between $\ell_{b}$ and $\ell_{d}$ exists for wall turbulence, and that we can determine the value of the constant $A$ by looking at wall turbulence.

Example: The $k$-equation in the equilibrium layer
In section 5.5 it was shown that for a turbulent pipe- or channel flow, we have almost equilibrium between production and dissipation of
turbulent kinetic energy within a layer extending from the wall up to approximately $15 \%$ of the radius or depth, see Fig. 5.15. Naturally, this layer is named the equilibrium layer.
In Fig 7.2 the measured distribution of $k / U_{F}^{2}$ over the cross-section of a pipe is shown. $U_{F}$ is the friction velocity i.e. $U_{F}=\left(\tau_{o} / \rho\right)^{0.5}$, and $\tau_{o}$ is the shear stress at the wall. In the figure also the linear distribution of the shear stress is shown.


Figure 7.2: Variation of $\tau$ and $k$ in turbulent pipe flow.

Within the equilibrium layer it is assumed that production is equal to dissipation:

$$
\begin{equation*}
\rho \nu_{T}\left(\frac{\partial U_{1}}{\partial x_{2}}\right)^{2}=\rho A \frac{k^{\frac{3}{2}}}{\ell_{d}} \tag{7.21}
\end{equation*}
$$

Multiplication by $\nu_{T}$ on both sides and substitution of $\tau / \rho=\nu_{T}\left(\partial U_{1} / \partial x_{2}\right)$ gives:

$$
\begin{equation*}
\left(\frac{\tau}{\rho}\right)^{2}=\nu_{T} A \frac{k^{\frac{3}{2}}}{\ell_{d}}=A k^{2} \tag{7.22}
\end{equation*}
$$

where the right-hand side has been rewritten by use of $\nu_{T}=\ell_{d} \sqrt{k}$. The expression for shear stress therefore reads:

$$
\begin{equation*}
\tau=\rho \sqrt{A} k \tag{7.23}
\end{equation*}
$$

From Fig. 7.2 it is seen that $k$ is varying approximately linearly except close to the axis of the pipe. The linear variation of $k$ can be expressed as:

$$
\begin{equation*}
k \approx \frac{y}{R} \cdot 3.3 U_{F}^{2} \quad \Leftrightarrow \quad \rho U_{F}^{2} \approx \frac{R}{y} 0.3 \rho \tag{7.24}
\end{equation*}
$$

where $y$ is the distance from the pipe axis, and $R$ is the radius of the pipe. The linear variation of the shear stress can be expressed as:

$$
\begin{equation*}
\tau=\frac{y}{R} \cdot \tau_{o}=\frac{y}{R} \cdot \rho U_{F}^{2} \tag{7.25}
\end{equation*}
$$

and by combining equation (7.24) and equation (7.25), we find:

$$
\begin{equation*}
\tau \approx 0.3 \rho k \tag{7.26}
\end{equation*}
$$

This expression is valid, where $k$ is varying approximately linearly, i.e. it is also valid in the equilibrium layer.

Comparison of equation (7.23) and equation (7.26) gives:

$$
\sqrt{A} \approx 0.3
$$

or

$$
\begin{equation*}
A \approx 0.09 \tag{7.27}
\end{equation*}
$$

Notice that the expression for dissipation, equation (5.67), is valid in general for a fully developed turbulent flow. The value of $A$ is therefore also valid outside the equilibrium layer.
Within the equilibrium layer it is possible to find a relation between $\ell_{b}$ and $\ell_{d}$.
Consider the two expressions:

$$
\begin{equation*}
\frac{\tau}{\rho}=\ell_{b}^{2}\left(\frac{\partial U_{1}}{\partial x_{2}}\right)^{2} \tag{7.28}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\tau}{\rho} & =\nu_{T} \frac{\partial U_{1}}{\partial x_{2}} \\
& =\ell_{d} \sqrt{k} \frac{\partial U_{1}}{\partial x_{2}} \tag{7.29}
\end{align*}
$$

The latter is rewritten to:

$$
\begin{equation*}
\left(\frac{\tau}{\rho}\right)^{2}=\ell_{d}^{2} \frac{\tau}{\rho \sqrt{A}}\left(\frac{\partial U_{1}}{\partial x_{2}}\right)^{2} \quad \Leftrightarrow \quad \frac{\tau}{\rho}=\ell_{d}^{2} \frac{1}{\sqrt{A}}\left(\frac{\partial U_{1}}{\partial x_{2}}\right)^{2} \tag{7.30}
\end{equation*}
$$

Comparison of equation (7.28) and equation (7.30) yields:

$$
\begin{equation*}
\ell_{b}^{2}=\ell_{d}^{2} \frac{1}{\sqrt{A}} \tag{7.31}
\end{equation*}
$$

Substitution of $A \approx 0.09$ means that in the equilibrium layer we have:

$$
\begin{equation*}
\ell_{d}=A^{1 / 4} \ell_{b} \approx 0.55 \ell_{b} \tag{7.32}
\end{equation*}
$$

### 7.3 Two-Equation Models

One of the drawbacks of the $k$-model is the lacking knowledge of $\ell_{d}$ in the general flow situation. In many cases a $k$-model will not predict better results than those obtainable with a mixing-length model, even though the solution of the $k$-transport equation in the entire domain increases the computational work considerably.

It is therefore natural to set up a transport equation for $\ell_{d}$ also, and thus eliminate any guesses or prior knowledge of $\ell_{d}$. If $\ell_{d}$ and $k$ can be calculated by transport equations, we can find the eddy viscosity by use of:

$$
\begin{equation*}
\nu_{T}=\ell_{d} \sqrt{k} \tag{7.33}
\end{equation*}
$$

A turbulence model including a second transport equation is named a twoequation model. In the course of time many different versions of a second transport equation have been proposed. The most frequently applied turbulence models do not have a transport equation specifically for $\ell_{d}$, as we shall se in the following.

### 7.3.1 The $k$ - $\epsilon$ Model

Instead of a transport equation for $\ell_{d}$, the $k-\epsilon$ model uses a transport equation for the dissipation i.e. for:

$$
\begin{equation*}
\epsilon=A \frac{k^{\frac{3}{2}}}{\ell_{d}} \tag{7.34}
\end{equation*}
$$

where $A \approx 0.09$ is valid everywhere as mentioned above.
If $k$ and $\epsilon$ are calculated by use of transport equations, we can subsequently calculate $\ell_{d}$ by equation (7.34) and $\nu_{T}$ by equation (7.33). In principle, the transport equation for $\epsilon$ and $k$ are set up in the same way. Without going into details, after smoothing the $\epsilon$-transport equation contains some terms depending on turbulent fluctuations, and these terms are rewritten in the same way as the 'fluctuation terms' were rewritten in the $k$-equation. The rewriting causes introduction of some extra coefficients like the coefficient $A$. All of these coefficients are named closure coefficients. The resulting transport equation for a fully turbulent flow is given below.

As shown in e.g. Wilcox (1994), Rodi (1984) or Versteeg (1995), adoption of the $k-\epsilon$ model means that the calculations of the mean flow are based on these equations:

Continuity equation:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial x_{i}}=0 \tag{7.35}
\end{equation*}
$$

Navier-Stokes' equation:

$$
\begin{equation*}
\rho \frac{d U_{i}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{i}}+\frac{\partial \tau_{j i}^{t u r b}}{\partial x_{j}} \tag{7.36}
\end{equation*}
$$

Shear stress:

$$
\begin{equation*}
\tau_{j i}^{t u r b}=\rho \nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right) \tag{7.37}
\end{equation*}
$$

Eddy viscosity:

$$
\begin{equation*}
\nu_{T}=\ell_{d} \sqrt{k} \tag{7.38}
\end{equation*}
$$

Dissipation:

$$
\begin{equation*}
\epsilon=A \frac{k^{3 / 2}}{\ell_{d}} \tag{7.39}
\end{equation*}
$$

$k$-equation:

$$
\begin{equation*}
\rho \frac{d k}{d t}=\rho \frac{\partial}{\partial x_{j}}\left(\frac{\nu_{T}}{\sigma_{k}} \frac{\partial k}{\partial x_{j}}\right)+\tau_{j i}^{t u r b} \frac{\partial U_{i}}{\partial x_{j}}-\rho \epsilon \tag{7.40}
\end{equation*}
$$

$\epsilon$-equation:

$$
\begin{equation*}
\rho \frac{d \epsilon}{d t}=\rho \frac{\partial}{\partial x_{j}}\left(\frac{\nu_{T}}{\sigma_{\epsilon}} \frac{\partial \epsilon}{\partial x_{j}}\right)+C_{1} \frac{\epsilon}{k} \tau_{j i}^{t u r b} \frac{\partial U_{i}}{\partial x_{j}}-C_{2} \rho \frac{\epsilon^{2}}{k} \tag{7.41}
\end{equation*}
$$

The coefficients $\sigma_{k}$ and $\sigma_{\epsilon}$ are introduced in order to have a possibility to compensate for the errors introduced by the assuming that the diffusion coefficients for momentum, turbulent energy and dissipation are equal.

After substitution of $\tau_{j i}^{t u r b}$ into the Navier-Stokes equation, the $k$-equation and the $\epsilon$-equation, knowledge of the closure coefficients $A, \sigma_{k}, \sigma_{\epsilon}, C_{1}$ and $C_{2}$ means that we have 8 equations with these 8 unknowns:
$U_{1}, U_{2}, U_{3}, \overline{p^{+}}, \nu_{T}, \ell_{d}, k$ og $\epsilon$
i.e. with proper boundary conditions we are able to solve the system of equations and determine the mean flow.

Often applied values of the closure coefficients are:
$A=0.09, \sigma_{k}=1.0, \sigma_{\epsilon}=1.3, C_{1}=1.44$ and $C_{2}=1.92$
as these values have resulted in accurate prediction of many flows. However, notice for special flow problems that it can be necessary to adjust the values for some of the coefficients. In the literature it is often claimed that the $k-\epsilon$ model might give inaccurate results for flow with adverse pressure gradients, i.e. if the flow takes place in the direction of increasing pressure.

### 7.3.2 The $k-\omega$ Model

In order to improve the predictions for flow with adverse pressure gradients, the literature often recommends application of the $k-\omega$ model, which is a turbulence model, where the second transport equation is set up for the so-called specific dissipation rate, $\omega$, defined as:

$$
\begin{equation*}
\omega=\frac{\epsilon}{A k} \tag{7.42}
\end{equation*}
$$

Thus, no transport equation is set up for $\ell_{d}$ directly, but knowledge of $\omega$ makes it possible to calculate $\ell_{d}$ by the expression:

$$
\begin{equation*}
\ell_{d}=\frac{\sqrt{k}}{\omega} \tag{7.43}
\end{equation*}
$$

This expression is derived by substitution of :

$$
\begin{equation*}
\epsilon=A \frac{k^{\frac{3}{2}}}{\ell_{d}} \tag{7.44}
\end{equation*}
$$

into equation (7.42), which gives:

$$
\begin{equation*}
\omega=\frac{\epsilon}{A k}=\frac{A k^{\frac{3}{2}} / \ell_{d}}{A k}=\frac{\sqrt{k}}{\ell_{d}} \tag{7.45}
\end{equation*}
$$

or

$$
\begin{equation*}
\ell_{d}=\frac{\sqrt{k}}{\omega} \tag{7.46}
\end{equation*}
$$

If this expression for $\ell_{d}$ is substituted into $\nu_{T}=\ell_{d} \sqrt{k}$, the result reads:

$$
\begin{equation*}
\nu_{T}=\frac{k}{\omega} \tag{7.47}
\end{equation*}
$$

which is the equation for the eddy viscosity in the $k-\omega$ model. The setup of the transport equation for $\omega$ is rather spectacular, see e.q. Wilcox (1994). The most simple version of the transport equation for $\omega$ (for fully turbulent flow) is given below.

As shown in Wilcox (1994) adoption of the $k$ - $\omega$ model means that the calculations of the mean flow are based on these equations:

Continuity equation:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial x_{i}}=0 \tag{7.48}
\end{equation*}
$$

Navier-Stokes equation:

$$
\begin{equation*}
\rho \frac{d U_{i}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{i}}+\frac{\partial \tau_{j i}^{t u r b}}{\partial x_{j}} \tag{7.49}
\end{equation*}
$$

Shear stress:

$$
\begin{equation*}
\tau_{j i}^{t u r b}=\rho \nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right) \tag{7.50}
\end{equation*}
$$

Eddy viscosity:

$$
\begin{equation*}
\nu_{T}=\frac{k}{\omega} \tag{7.51}
\end{equation*}
$$

Dissipation:

$$
\begin{equation*}
\epsilon=A \frac{k^{3 / 2}}{\ell_{d}} \tag{7.52}
\end{equation*}
$$

$k$-equation:

$$
\begin{equation*}
\rho \frac{d k}{d t}=\rho \frac{\partial}{\partial x_{j}}\left(\frac{\nu_{T}}{\sigma_{k}} \frac{\partial k}{\partial x_{j}}\right)+\tau_{j i}^{t u r b} \frac{\partial U_{i}}{\partial x_{j}}-\rho \epsilon \tag{7.53}
\end{equation*}
$$

$\omega$-equation:

$$
\begin{equation*}
\rho \frac{d \omega}{d t}=\rho \frac{\partial}{\partial x_{j}}\left(\sigma \nu_{T} \frac{\partial \omega}{\partial x_{j}}\right)+\alpha \frac{\omega}{k} \tau_{j i}^{t u r b} \frac{\partial U_{i}}{\partial x_{j}}-\beta \rho \omega^{2} \tag{7.54}
\end{equation*}
$$

After substitution of $\tau_{j i}^{t u r b}$ into the Navier-Stokes equation, the $k$-equation and the $\omega$-equation, knowledge of the closure coefficients $A, \sigma_{k}, \sigma, \alpha$ and $\beta$ means that we have 8 equations with these 8 unknowns:
$U_{1}, U_{2}, U_{3}, \overline{p^{+}}, \nu_{T}, k, \omega$ and $\epsilon$
i.e. with proper boundary conditions, we are able to solve the system of equations and determine the mean flow.

Often applied values of the closure coefficients are:
$A=0.09, \sigma_{k}=1.0, \sigma=0.5, \alpha=0.56$ and $\beta=0.025$
as these values have resulted in accurate prediction of many flows. However, notice for special flow problems that it can be necessary to adjust the values for some of the coefficients, see e.g Wilcox (2006), where a modified version of the transport equation for $\omega$ is presented. For flows with adverse pressure gradients, i.e. if the flow takes place in the direction of increasing pressure and separation is likely to occur, application of the $k-\omega$ model is normally recommended.

## Chapter 8

## Transport Equation for Dissolved Substance

In a flow the transport of a dissolved substance is caused by two transport mechanisms named diffusion and convection.

The flux through a section due to diffusion reads:

$$
\begin{equation*}
\vec{F}_{D}=-D \operatorname{grad} c \tag{8.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(F_{D}\right)_{i}=-D \frac{\partial c}{\partial x_{i}} \tag{8.2}
\end{equation*}
$$

where $c$ is the concentration of the dissolved substance $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, grad $c$ is the gradient of $c,\left|\vec{F}_{D}\right|$ is the flux of substance $\left(\mathrm{kg} / \mathrm{s} / \mathrm{m}^{2}\right)$ through a surface perpendicular to grad $c$ and $D$ is the diffusivity (often named the diffusion coefficient) $\left(\mathrm{m}^{2} / \mathrm{s}\right)$. As mentioned in section 2.4.1, diffusion has to be introduced, because we not intend to describe the motions of the individual molecules. Normally $D$ is of the same order of magnitude as the kinematic viscosity $\nu$ of the fluid.

Consider a fixed, closed surface $A$ of arbitrary shape, bounding the volume $X$, see Fig. 8.1. The inflow of substance through $d A$ is the sum of convection and diffusion, i.e.

$$
F d A=-c v_{i} d A_{i}-\left(F_{D}\right)_{i} d A_{i}=\left(-c v_{i}+D \frac{\partial c}{\partial x_{i}}\right) d A_{i}
$$

where $d A_{i}$ is the outward area vector. The increase of substance within the volume $X$ has to be the net inflow of substance through $A$ plus the substance


Figure 8.1: Definition sketch, inflow of substance.
added to $X$ from any internal sources. Expressed mathematically this reads:

$$
\begin{equation*}
\int_{X} \frac{\partial c}{\partial t} d X=\int_{A}\left(-c v_{i}+D \frac{\partial c}{\partial x_{i}}\right) d A_{i}+\int_{X} S_{c} d X \tag{8.3}
\end{equation*}
$$

where $S_{c}$ is the source strength $\left(\mathrm{kg} / \mathrm{m}^{3} / \mathrm{s}\right)$. If the surface integral is rewritten by use of Gauss' divergence theorem:

$$
\int_{A} l_{i} d A_{i}=\int_{X} \frac{\partial l_{i}}{\partial x_{i}} d X
$$

equation (8.3) reads:

$$
\begin{equation*}
\int_{X}\left[\frac{\partial c}{\partial t}+\frac{\partial\left(c v_{i}\right)}{\partial x_{i}}-\frac{\partial}{\partial x_{i}}\left(D \frac{\partial c}{\partial x_{i}}\right)-S_{c}\right] d X=0 \tag{8.4}
\end{equation*}
$$

Equation (8.4) is, however, only fulfilled for an arbitrary volume if:

$$
\begin{equation*}
\frac{\partial c}{\partial t}+\frac{\partial\left(c v_{i}\right)}{\partial x_{i}}-\frac{\partial}{\partial x_{i}}\left(D \frac{\partial c}{\partial x_{i}}\right)-S_{c}=0 \tag{8.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\partial c}{\partial t}+c \frac{\partial v_{i}}{\partial x_{i}}+v_{i} \frac{\partial c}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(D \frac{\partial c}{\partial x_{i}}\right)+S_{c} \tag{8.6}
\end{equation*}
$$

For an incompressible fluid, $\partial v_{i} / \partial x_{i}=0$, equation (8.6) is reduced to:

$$
\begin{equation*}
\frac{\partial c}{\partial t}+v_{i} \frac{\partial c}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(D \frac{\partial c}{\partial x_{i}}\right)+S_{c} \tag{8.7}
\end{equation*}
$$

If we finally use the expression for the rate of change, equation (1.19), we can write equation (8.7) as:

$$
\begin{equation*}
\frac{d c}{d t}=\frac{\partial}{\partial x_{i}}\left(D \frac{\partial c}{\partial x_{i}}\right)+S_{c} \tag{8.8}
\end{equation*}
$$

This equation is named the transport equation for substance.

### 8.1 Turbulent Flow

In a turbulent flow the instantaneous value of concentration reads:

$$
\begin{equation*}
c=\bar{c}+c^{\prime} \tag{8.9}
\end{equation*}
$$

where $\bar{c}$ is the smoothed concentration and $c^{\prime}$ is the fluctuation, i.e. $\overline{c^{\prime}}=0$.
Substitution of equation (8.9) into equation (8.5) and a subsequent smoothing give:

$$
\begin{equation*}
\frac{\partial \bar{c}}{\partial t}+\frac{\partial \overline{\left(c v_{i}\right)}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(D \frac{\partial \bar{c}}{\partial x_{i}}\right)+S_{c} \tag{8.10}
\end{equation*}
$$

The second term on the left-hand side is rewritten as follows:

$$
\begin{align*}
\frac{\partial \overline{\left(\bar{c}+c^{\prime}\right)\left(U_{i}+u_{i}\right)}}{\partial x_{i}} & =\frac{\partial\left(\bar{c} U_{i}+\overline{c^{\prime}} U_{i}+\bar{c} \overline{u_{i}}+\overline{c^{\prime} u_{i}}\right)}{\partial x_{i}} \\
& =\frac{\partial\left(\bar{c} U_{i}+\overline{c^{\prime} u_{i}}\right)}{\partial x_{i}} \\
& =\frac{\partial\left(\bar{c} U_{i}\right)}{\partial x_{i}}+\frac{\partial \overline{c^{\prime} u_{i}}}{\partial x_{i}} \\
& =U_{i} \frac{\partial \bar{c}}{\partial x_{i}}+\frac{\partial \overline{c^{\prime} u_{i}}}{\partial x_{i}} \tag{8.11}
\end{align*}
$$

where the continuity equation for the mean flow:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial x_{i}}=0 \tag{8.12}
\end{equation*}
$$

has been used. Substitution of equation (8.11) into equation (8.10) gives:

$$
\begin{equation*}
\frac{\partial \bar{c}}{\partial t}+U_{i} \frac{\partial \bar{c}}{\partial x_{i}}+\frac{\partial \overline{c^{\prime} u_{i}}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(D \frac{\partial \bar{c}}{\partial x_{i}}\right)+S_{c} \tag{8.13}
\end{equation*}
$$

which after use of the expression for the rate of change, equation (1.19), reads:

$$
\begin{equation*}
\frac{d \bar{c}}{d t}+\frac{\partial \overline{c^{\prime} u_{i}}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}}\left(D \frac{\partial \bar{c}}{\partial x_{i}}\right)+S_{c} \tag{8.14}
\end{equation*}
$$

The term $\overline{c^{\prime} u_{i}}$ can be interpreted as a convective transport of substance through a surface, but equation (8.13) is of no use in practice unless a relation between the mean flow and the term $\overline{c^{\prime} u_{i}}$ can be established.

Consider the area $A$ of a section parallel to the wall in a uniform mean flow along the flat wall, see Fig. 8.2. The smoothed value of the convective flux of


Figure 8.2: Definition sketch, convective transport caused by fluctuations.
substance through the section can be expressed as $\bar{F}=\overline{c^{\prime} u_{2}}$. However, if the way of thinking from the mixing length theory is applied, another expression describing the same convective transport can be set up.

The fluid crossing the section in the upward direction is on average coming from a domain positioned $0.5 \ell_{b}$ under the section. Here $\ell_{b}$ is the mixing length. The concentration of this fluid is denoted $\overline{c_{u}}$, and it can be expressed as:

$$
\overline{c_{u}}=\bar{c}+\frac{\partial \bar{c}}{\partial x_{2}} \cdot \Delta x_{2}=\bar{c}+\frac{\partial \bar{c}}{\partial x_{2}} \cdot \frac{-\ell_{b}}{2}
$$

The average concentration of the water crossing the section in the downward direction, denoted $\overline{c_{d}}$, is similarly expressed as:

$$
\overline{c_{d}}=\bar{c}+\frac{\partial \bar{c}}{\partial x_{2}} \cdot \Delta x_{2}=\bar{c}+\frac{\partial \bar{c}}{\partial x_{2}} \cdot \frac{\ell_{b}}{2}
$$

Based on continuity the upward discharge (volume flux) has to be equal to the downward discharge, and the magnitude of these is denoted $Q$. The average transport of substance (positive in the direction of the $x_{2}$-axis) caused by this swapping of volume reads:

$$
\begin{align*}
\bar{F} A & =Q \overline{c_{u}}-Q \overline{c_{d}} \\
& =Q\left(\bar{c}+\frac{\partial \bar{c}}{\partial x_{2}} \cdot \frac{-\ell_{b}}{2}\right)-Q\left(\bar{c}+\frac{\partial \bar{c}}{\partial x_{2}} \cdot \frac{\ell_{b}}{2}\right) \\
& =\bar{c}(Q-Q)-Q \ell_{b} \frac{\partial \bar{c}}{\partial x_{2}}=-Q \ell_{b} \frac{\partial \bar{c}}{\partial x_{2}} \tag{8.15}
\end{align*}
$$

Thus the smoothed flux of transported substance reads:

$$
\begin{equation*}
\bar{F}=-\frac{Q \ell_{b}}{A} \frac{\partial \bar{c}}{\partial x_{2}} \tag{8.16}
\end{equation*}
$$

We can interpret $\bar{F}$ as the result of a diffusion process, because equation (8.16) can also be written as:

$$
\begin{equation*}
\bar{F}=-D_{T} \frac{\partial \bar{c}}{\partial x_{2}} \tag{8.17}
\end{equation*}
$$

where the turbulent diffusion coefficient, $D_{T}$, reads:

$$
\begin{equation*}
D_{T}=\frac{Q \ell_{b}}{A} \tag{8.18}
\end{equation*}
$$

As both $Q$ and $\ell_{b}$ vary as the distance from the wall changes, it is seen that also the turbulent diffusion coefficient will vary over the flow field.

As $\overline{c^{\prime} u_{2}}=\bar{F}$ (both describe the convective transport caused by the fluctuations), we have:

$$
\begin{equation*}
\overline{c^{\prime} u_{2}}=-D_{T} \frac{\partial \bar{c}}{\partial x_{2}} \tag{8.19}
\end{equation*}
$$

and in this way a relation between fluctuations and the mean flow has been set up. As turbulence normally causes a very strong dispersion, we have $D_{T} \gg D$ in most cases.

In section 5.3 it was shown that turbulent shear stress is caused by exchange of momentum, and can be expressed as:

$$
\begin{equation*}
\tau_{21}^{t u r b}=\nu_{T} \frac{\partial\left(\rho U_{1}\right)}{\partial x_{2}} \tag{8.20}
\end{equation*}
$$

However, this expression also shows that turbulent shear stress can be interpreted as diffusion of momentum with diffusion coefficient $\nu_{T}$. As the exchange of both momentum and substance is caused by the same eddies, it is often assumed that the two processes have approximately equal diffusion coefficients. If the non-dimensional Schmidt number is defined as:

$$
\begin{equation*}
\sigma_{c}=\frac{\nu_{T}}{D_{T}} \tag{8.21}
\end{equation*}
$$

it is therefore expected that we have $\sigma_{c} \approx 1$. An often applied value is $\sigma_{c}=0.9$. With this assumption we can find $D_{T}$ from equation (8.21), when the eddy viscosity $\nu_{T}$ has been calculated by a suitable turbulence model.

The one-dimensional equation (8.19) can be generalized to:

$$
\begin{equation*}
\overline{c^{\prime} u_{i}}=-D_{T} \frac{\partial \bar{c}}{\partial x_{i}} \tag{8.22}
\end{equation*}
$$

and after substitution into equation (8.14), we have the transport equation for substance in a turbulent flow:

$$
\begin{equation*}
\frac{d \bar{c}}{d t}=\frac{\partial}{\partial x_{i}}\left(\left(D+\frac{\nu_{T}}{\sigma_{c}}\right) \frac{\partial \bar{c}}{\partial x_{i}}\right)+S_{c} \tag{8.23}
\end{equation*}
$$

## Chapter 9

## Transport Equation for Thermal Energy

The sum of kinetic and potential energy for a fluid particle is often called the mechanical energy. Besides this energy a fluid particle also has the so-called internal energy $e$, which for an incompressible fluid simply is thermal energy ( $\mathrm{Nm} / \mathrm{m}^{3}$ or $\mathrm{J} / \mathrm{m}^{3}$ ). The increase in thermal energy for an incompressible fluid is found by $d e=\rho c d T$, where $c$ is the specific heat $(\mathrm{J} / \mathrm{kg} / \mathrm{K})$ and $T$ is the temperature (degree Kelvin, K). The flows considered in civil engineering normally have so small flow velocities that even air can be considered incompressible, and only rather small pressure variations are present. It is therefore a good approximation to estimate the increase in thermal energy by $d e=\rho c_{p} d T$, where $c_{p}$ is the specific heat at constant pressure.

The concept of thermal energy has to be introduced, because we want describe the fluid as a continuum instead of a set of molecules. The thermal energy is thus the kinetic energy corresponding to velocities that cancel out, when the average velocity of the fluid particle is calculated.

In the following it is assumed that thermal energy can only propagate by conduction (exchange of energy on molecular level) and by convection, but in practical heat transfer problems also propagation by radiation is important.

Thermal energy propagating by conduction is described by Fourier's law:

$$
\begin{equation*}
\vec{q}=-\lambda \operatorname{grad} T \tag{9.1}
\end{equation*}
$$

or

$$
\begin{equation*}
q_{i}=-\lambda \frac{\partial T}{\partial x_{i}} \tag{9.2}
\end{equation*}
$$

where $\left|q_{i}\right|$ is the thermal flux $\left(\mathrm{J} / \mathrm{s} / \mathrm{m}^{2}\right)$ through a surface perpendicular to the temperatur gradient, $\lambda$ is the thermal conductivity ( $\mathrm{J} / \mathrm{m} / \mathrm{grad} / \mathrm{s}$ ) and $T$ is the temperature.

As equation (9.2) can be rewritten to:

$$
\begin{equation*}
q_{i}=-\frac{\lambda}{\rho c_{p}} \frac{\partial\left(\rho c_{p} T\right)}{\partial x_{i}} \tag{9.3}
\end{equation*}
$$

i.e. the thermal flux is proportional to the gradient of the thermal energy, it is natural that the quantity:

$$
\begin{equation*}
D_{J}=\frac{\lambda}{\rho c_{p}} \tag{9.4}
\end{equation*}
$$

is named the thermal diffusivity $\left(\mathrm{m}^{2} / \mathrm{s}\right)$, or thermal diffusion coefficient. Notice that often $a$ is used to denote the thermal diffusivity.

The non-dimensional ratio between the kinematic viscosity and the thermal diffusivity is denoted $\operatorname{Pr}$ and is named Prandtl's number:

$$
\begin{equation*}
\operatorname{Pr}=\frac{\nu}{D_{J}} \tag{9.5}
\end{equation*}
$$

Thus Prandtl's number is a constant for a given substance. Prandtl's number is for water $\operatorname{Pr} \approx 7$ and for air $\operatorname{Pr} \approx 0.7$.


Figure 9.1: Definition sketch, inflow of thermal energy.
Consider a fixed, closed surface $A$ of arbitrary shape, bounding the volume $X$, see Fig. 9.1. The inflow of thermal energy through $d A$ is the sum of convection
and conduction, i.e.

$$
F d A=-c_{p} T \rho v_{i} d A_{i}-q_{i} d A_{i}=\left(-c_{p} T \rho v_{i}+\lambda \frac{\partial T}{\partial x_{i}}\right) d A_{i}
$$

where $d A_{i}$ is the outward area vector. The increase of thermal energy within the volume $X$ has to be the net inflow of thermal energy through $A$ plus the thermal energy added to $X$ from internal heat sources as e.q. the dissipation $\epsilon$. Expressed mathematically, this reads:

$$
\begin{equation*}
\int_{X} \frac{\partial T}{\partial t} c_{p} \rho d X=\int_{A}\left(-c_{p} T \rho v_{i}+\lambda \frac{\partial T}{\partial x_{i}}\right) d A_{i}+\int_{X} \epsilon \rho d X \tag{9.6}
\end{equation*}
$$

If the surface integral is rewritten by use of Gauss' divergence theorem:

$$
\int_{A} l_{i} d A_{i}=\int_{X} \frac{\partial l_{i}}{\partial x_{i}} d X
$$

equation (9.6) can be written as:

$$
\begin{equation*}
\int_{X}\left[c_{p} \rho \frac{\partial T}{\partial t}+c_{p} \rho \frac{\partial\left(v_{i} T\right)}{\partial x_{i}}-\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial T}{\partial x_{i}}\right)-\epsilon \rho\right] d X=0 \tag{9.7}
\end{equation*}
$$

Equation (9.7) is, however, only fulfilled for an arbitrary volume if :

$$
\begin{equation*}
c_{p} \rho \frac{\partial T}{\partial t}+c_{p} \rho \frac{\partial\left(v_{i} T\right)}{\partial x_{i}}-\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial T}{\partial x_{i}}\right)-\epsilon \rho=0 \tag{9.8}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{p} \rho\left(\frac{\partial T}{\partial t}+\frac{\partial\left(v_{i} T\right)}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial T}{\partial x_{i}}\right)+\epsilon \rho \tag{9.9}
\end{equation*}
$$

For an incompressible fluid, where $\partial v_{i} / \partial x_{i}=0$, this expression can be rewritten to:

$$
\begin{equation*}
c_{p} \rho\left(\frac{\partial T}{\partial t}+v_{i} \frac{\partial T}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial T}{\partial x_{i}}\right)+\epsilon \rho \tag{9.10}
\end{equation*}
$$

If the expression for the rate of change, equation (1.19), is used, we can write equation (9.10) as:

$$
\begin{equation*}
c_{p} \rho \frac{d T}{d t}=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial T}{\partial x_{i}}\right)+\epsilon \rho \tag{9.11}
\end{equation*}
$$

This equation is named the transport equation for thermal energy or simply the energy equation.

### 9.1 Turbulent Flow

In a turbulent flow we have:

$$
\begin{equation*}
T=\bar{T}+T^{\prime} \tag{9.12}
\end{equation*}
$$

where $\bar{T}$ is the smoothed concentration and $T^{\prime}$ is the fluctuation, i.e. $\overline{T^{\prime}}=0$.
After substitution of (9.12) into equation (9.9), a subsequent smoothing gives:

$$
\begin{equation*}
c_{p} \rho\left(\frac{\partial \bar{T}}{\partial t}+\frac{\partial \overline{\left(U_{i}+u_{i}\right)\left(\bar{T}+T^{\prime}\right)}}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial \bar{T}}{\partial x_{i}}\right)+\bar{\epsilon} \rho \tag{9.13}
\end{equation*}
$$

The second term on the left-hand side is rewritten as follows:

$$
\begin{align*}
\frac{\partial \overline{\left(U_{i}+u_{i}\right)\left(\bar{T}+T^{\prime}\right)}}{\partial x_{i}} & =\frac{\partial\left(U_{i} \bar{T}+U_{i} \overline{T^{\prime}}+\overline{u_{i}} \bar{T}+\overline{u_{i} T^{\prime}}\right)}{\partial x_{i}} \\
& =\frac{\partial\left(U_{i} \bar{T}+\overline{u_{i} T^{\prime}}\right)}{\partial x_{i}} \\
& =\frac{\partial\left(U_{i} \bar{T}\right)}{\partial x_{i}}+\frac{\partial \overline{u_{i} T^{\prime}}}{\partial x_{i}} \tag{9.14}
\end{align*}
$$

and substitution into to (9.13) gives:

$$
\begin{equation*}
c_{p} \rho\left(\frac{\partial \bar{T}}{\partial t}+\frac{\partial\left(U_{i} \bar{T}\right)}{\partial x_{i}}+\frac{\partial \overline{u_{i} T^{\prime}}}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial \bar{T}}{\partial x_{i}}\right)+\bar{\epsilon} \rho \tag{9.15}
\end{equation*}
$$

If the continuity equation of the mean flow is used

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial x_{i}}=0 \tag{9.16}
\end{equation*}
$$

equation (9.15) can be rewritten to:

$$
\begin{equation*}
c_{p} \rho\left(\frac{\partial \bar{T}}{\partial t}+U_{i} \frac{\partial \bar{T}}{\partial x_{i}}+\frac{\partial \overline{u_{i} T^{\prime}}}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial \bar{T}}{\partial x_{i}}\right)+\bar{\epsilon} \rho \tag{9.17}
\end{equation*}
$$

If the expression for the rate of change, equation (1.19), is used, equation (9.17) reads:

$$
\begin{equation*}
c_{p} \rho\left(\frac{d \bar{T}}{d t}+\frac{\partial \overline{u_{i} T^{\prime}}}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}\left(\lambda \frac{\partial \bar{T}}{\partial x_{i}}\right)+\bar{\epsilon} \rho \tag{9.18}
\end{equation*}
$$

The term $\rho c_{p} \overline{u_{i} T^{\prime}}=\overline{u_{i} \rho c_{p} T^{\prime}}$ can be interpreted as a convective transport of thermal energy through a surface, but equation (9.18) is of no use in practice, unless a relations between the mean flow and the terms $\overline{u_{i} T^{\prime}}$ and $\bar{\epsilon}$ can be established. The expression for the smoothed dispersion reads:

$$
\begin{equation*}
\bar{\epsilon}=\overline{\nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \frac{\partial v_{i}}{\partial x_{j}}} \tag{9.19}
\end{equation*}
$$

but as the non-linear fluctuation terms have the same character as the Reynolds stresses, we must either use the expression for $\bar{\epsilon}$, equation (5.67):

$$
\begin{equation*}
\bar{\epsilon}=A \frac{k^{3 / 2}}{\ell_{d}} \tag{9.20}
\end{equation*}
$$

where $A \approx 0.09$ and $\ell_{d}$ is the length scale for the eddies, or calculate the dissipation directly, as it is done by a $k-\epsilon$ turbulence model. If a $k-\omega$ model is used, we know that $\ell_{d}=k / \omega$. If a $k$-model is applied, assessed values for $\ell_{d}$ have to be used.

The term $\rho c_{p} \overline{u_{i} T^{\prime}}=\overline{u_{i} \rho c_{p} T^{\prime}}$ can be interpreted as the transport of thermal energy due to the fluctuations, and we describe it as a diffusion process, i.e as a product of a diffusion coefficient and a gradient of the 'concentration' of the thermal energy $\overline{\rho c_{p} T}$. We did exactly the same, when the transport of a substance from fluctuations had to be described. This gives:

$$
\begin{equation*}
\overline{u_{i} \rho c_{p} T^{\prime}}=-D_{J, T} \frac{\partial \overline{\rho c_{p} T}}{\partial x_{i}} \tag{9.21}
\end{equation*}
$$

where $D_{J, T}$ is named the turbulent thermal diffusivity (diffusion coefficient) $\left(\mathrm{m}^{2} / \mathrm{s}\right)$. As the exchange of both momentum and thermal energy is caused by the same eddies, it is often assumed that the two diffusion processes have approximately the same diffusion coefficient. If the non-dimensional number named the turbulent Prandtl number is defined as:

$$
\begin{equation*}
\sigma_{h}=\frac{\nu_{T}}{D_{J, T}} \tag{9.22}
\end{equation*}
$$

the value $\sigma_{h} \approx 1$ is expected. Notice that the turbulent Prandtl number is sometimes also denoted $\operatorname{Pr}_{T}$. For fluids having a Prandtl number $\operatorname{Pr}=\nu / D_{J}>$ 0.7 , experiments show that $\sigma_{h}\left(=P r_{T}\right)=0.9-1.0$ is a good estimate except for free turbulence (jets, wakes and mixing layers). In the latter cases $\sigma_{h} \approx 0.7$ is a better estimate.

Substitution of equation (9.21) and equation (9.22) into equation (9.18) gives:

$$
\begin{equation*}
c_{p} \rho \frac{d \bar{T}}{d t}=\frac{\partial}{\partial x_{i}}\left(\left(\lambda+\frac{\rho c_{p} \nu_{T}}{\sigma_{h}}\right) \frac{\partial \bar{T}}{\partial x_{i}}\right)+\bar{\epsilon} \rho \tag{9.23}
\end{equation*}
$$

The equation is named the transport equation for thermal energy in turbulent flow. Division by $c_{p} \rho$ gives:

$$
\begin{equation*}
\frac{d \bar{T}}{d t}=\frac{\partial}{\partial x_{i}}\left(\left(\frac{\lambda}{c_{p} \rho}+\frac{\nu_{T}}{\sigma_{h}}\right) \frac{\partial \bar{T}}{\partial x_{i}}\right)+\frac{\bar{\epsilon}}{c_{p}} \tag{9.24}
\end{equation*}
$$

Substitution of the expression for the thermal diffusion coefficient, equation (9.4), gives finally:

$$
\begin{equation*}
\frac{d \bar{T}}{d t}=\frac{\partial}{\partial x_{i}}\left(\left(D_{J}+\frac{\nu_{T}}{\sigma_{h}}\right) \frac{\partial \bar{T}}{\partial x_{i}}\right)+\frac{\bar{\epsilon}}{c_{p}} \tag{9.25}
\end{equation*}
$$

It is seen that the equation has the same structure as the transport equation for a substance in turbulent flow, i.e. the rate of change is equal to a gradient of the diffusion plus a source term. This is not surprising, as $c_{p} \rho T$ can be interpreted as the 'concentration' of thermal energy.

## Chapter 10

## Non-Homogeneous Fluids

Sometimes the density of a fluid is varying within the flow field. These variations may be caused by e.g. variations in the concentration of dissolved matter or variations of the temperature of the fluid. Variations in density create buoyancy forces, which sometimes affect the course of the flow considerably. Typically buoyancy force has to be taken into account for cases like e.g. flow in a heated room, flows caused by fire, smoke plumes from chimneys and the outlet of waste water into a recipient.

Below it is described how flows of fluid with a continuous variation of the density can be treated.

### 10.1 Boussinesq's approximation

The flow of a mildly non-homogenous fluid can by analyzed properly by adopting an approximation proposed first by Boussinesq.

It is assumed that density gradients are so small that the local equation of continuity can be written (as usual):

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial x_{i}}=0 \tag{10.1}
\end{equation*}
$$

This implies that the Navier-Stokes equation can be written (also as usual):

$$
\begin{equation*}
\rho \frac{d v_{i}}{d t}=-\frac{\partial p}{\partial x_{i}}+\rho g_{i}+\frac{\partial}{\partial x_{j}}\left(\mu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{10.2}
\end{equation*}
$$

but $\rho$ is now a variable quantity. The equation expresses that the inertial forces are balanced by pressure forces, gravity forces and viscous forces.

Solution of the Navier-Stokes equation coupled with a transport equation for dissolved substance and the energy equation for thermal energy, yields the actual variation of the density, as

$$
\begin{equation*}
\rho=\rho(c, T) \tag{10.3}
\end{equation*}
$$

is assumed to be a known relation.
In some cases, most frequently with flows of air, it is sufficient to assume

$$
\begin{equation*}
\rho=\rho(T) \tag{10.4}
\end{equation*}
$$

and in such cases the Navier-Stokes equation is often rewritten as shown below. The purpose of the rewriting is primarily a simplification of the computations during the solution of the equations.

The gradients of $\rho$ are assumed to be small, which means that the effect from density variations on inertial and viscous forces can be neglected. The density in the expression for the inertial force is therefore replaced by a reference density denoted $\rho_{o}$, and the viscosity $\mu=\rho \nu$ is replaced by $\rho_{o} \nu$.

On the other hand, to replace $\rho$ in the gravity term by $\rho_{o}$ is not allowed. For example, a local heating of a resting fluid leads to unequal sizes of the buoyancy and gravity force on the heated particle, and this net force creates a motion of the fluid.

In order to obtain a unique definition of the dynamic pressure $p^{+}$, i.e. the difference between the actual pressure and hydrostatic pressure, it is necessary to calculate the hydrostatic pressure on the basis of the reference density. The definition equation for $p^{+}$reads:

$$
\begin{equation*}
p=p^{+}-\rho_{o} g z \tag{10.5}
\end{equation*}
$$

where $z$ is a vertical coordinate, positive upwards. This implies that $\partial z / \partial x_{i}$ is a vertical, upward unit vector giving $g \partial z / \partial x_{i}=-g_{i}$. From equation (10.5) is seen that

$$
\begin{equation*}
\frac{\partial p}{\partial x_{i}}=\frac{\partial p^{+}}{\partial x_{i}}+\rho_{o} g_{i} \tag{10.6}
\end{equation*}
$$

Substitution of this expression into equation (10.2) and the actual density for the inertial and viscous forces replaced by the reference density gives:

$$
\begin{equation*}
\rho_{o} \frac{d v_{i}}{d t}=-\frac{\partial p^{+}}{\partial x_{i}}+\left(\rho-\rho_{0}\right) g_{i}+\frac{\partial}{\partial x_{j}}\left(\rho_{o} \nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{10.7}
\end{equation*}
$$

The deviation of the actual density from the reference density is denoted $\Delta \rho$, i.e.

$$
\begin{equation*}
\Delta \rho=\rho-\rho_{o} \tag{10.8}
\end{equation*}
$$

Heating of a mass $m$ with volume $X$ increases the volume, and the expression for the increment reads:

$$
\begin{equation*}
\Delta X=\beta X \Delta T \tag{10.9}
\end{equation*}
$$

where $\beta$ is the spatial coefficient of thermal expansion and $\Delta T$ is the increment of the temperature. For an ideal gas (as e.g. air) the coefficient is $\beta=1 / T_{\text {Kelvin }} \approx$ $1 / 293=3.4 \cdot 10^{-3} \mathrm{deg}^{-1}$. The coefficient is varying from fluid to fluid and e.g. $\beta \approx 5.0 \cdot 10^{-5} \mathrm{deg}^{-1}$ for water.

The corresponding change of the density is calculated based on the principle of conservation of mass:

$$
\begin{equation*}
\Delta m=\Delta(\rho X)=X \Delta \rho+\rho \Delta X=0 \tag{10.10}
\end{equation*}
$$

giving

$$
\begin{equation*}
\Delta \rho=-\rho \frac{\Delta X}{X}=-\rho \beta \Delta T \tag{10.11}
\end{equation*}
$$

after substitution of equation (10.9). If $T_{o}$ corresponds to $\rho_{o}$, the deviation in density is:

$$
\begin{equation*}
\rho-\rho_{o}=-\rho \beta\left(T-T_{o}\right) \approx-\rho_{o} \beta\left(T-T_{o}\right) \tag{10.12}
\end{equation*}
$$

which substituted into the Navier-Stokes equation gives:

$$
\begin{equation*}
\rho_{o} \frac{d v_{i}}{d t}=-\frac{\partial p^{+}}{\partial x_{i}}-\rho_{o} \beta\left(T-T_{o}\right) g_{i}+\frac{\partial}{\partial x_{j}}\left(\rho_{o} \nu\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right)\right) \tag{10.13}
\end{equation*}
$$

Application of this equation makes a separate calculation of $\rho$ unnecessary. Equation (10.13) is valid for snapshots of turbulent flow. The equation valid for the mean flow is obtained after smoothing, which gives:

$$
\begin{align*}
\rho_{o} \frac{d U_{i}}{d t}= & -\frac{\partial \overline{p^{+}}}{\partial x_{i}}-\rho_{o} \beta\left(\bar{T}-T_{o}\right) g_{i} \\
& +\frac{\partial}{\partial x_{j}}\left(\rho_{o} \nu\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)-\rho_{o} \overline{u_{i} u_{j}}\right) \tag{10.14}
\end{align*}
$$

In technical turbulence theory the Reynolds' stresses $-\rho_{o} \overline{u_{i} u_{j}}$ are modelled as

$$
\begin{equation*}
-\rho_{o} \overline{u_{i} u_{j}}=\nu_{T}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right) \quad \text { for } \quad i \neq j \tag{10.15}
\end{equation*}
$$

where $\nu_{T}$ is calculated by a suitable turbulence model.
All in all we have:

$$
\begin{equation*}
\rho_{o} \frac{d U_{i}}{d t}=-\frac{\partial \overline{p^{+}}}{\partial x_{i}}-\rho_{o} \beta\left(\bar{T}-T_{o}\right) g_{i}+\frac{\partial}{\partial x_{j}}\left(\rho_{o}\left(\nu+\nu_{T}\right)\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)\right) \tag{10.16}
\end{equation*}
$$

Notice that we cannot expect the usual expressions for $\nu_{T}$ to be valid for flows having very large density gradients corresponding to a stratification of the fluid.

In order to decide whether variations in density shall be taken into account or not, we need a parameter related to the differences in density.

Consider a boundary layer flow solely driven by differences in density like the flow along a heated, vertical wall, where the velocity outside the boundary layer is zero, $v_{o}=0$. The constant density outside the boundary layer is denoted $\rho_{o}$ and the density at the heated wall is denoted $\rho_{w}$.

The forces acting on a fluid particle within the boundary layer are the vertical pressure force (buoyancy) and the gravity force.

According to the gradient-theorem derived in Appendix A, the pressure force reads: $O=|-\operatorname{grad} p| \cdot X$, where $X$ is the volume of the particle. As usual the pressure gradient within the boundary layer is equal to the gradient outside the layer, and outside the layer the fluid is at rest giving $|-\operatorname{grad} p|=\rho_{o} g$. Thus the buoyancy reads: $O=|-\operatorname{grad} p| \cdot X=\rho_{o} g X$.

Due to the variation of the density across the boundary layer, the gravity force depends on the position of the particle. A typical value of the gravity force is found by using the average value of the density i.e. $\rho=1 / 2\left(\rho_{o}+\rho_{w}\right)$, and in this case the total vertical force on the particle reads:

$$
\begin{equation*}
F=O-G=\rho_{o} g X-\frac{\rho_{o}+\rho_{w}}{2} X g=\frac{1}{2}\left(\rho_{o}-\rho_{w}\right) g X \tag{10.17}
\end{equation*}
$$

Introduction of the notation:

$$
\begin{equation*}
\Delta \rho=\rho_{w}-\rho_{o} \tag{10.18}
\end{equation*}
$$

means that the total force can be expressed as:

$$
\begin{equation*}
F=\frac{1}{2}|\Delta \rho| g X \tag{10.19}
\end{equation*}
$$

Being at rest at the time $t=0$, a particle will start to move upwards due to the force $F$. Having moved the distance $L$, the velocity of the particle $V$ can be calculated by the classical energy theorem for a particle stating that the increment of kinetic energy is equal to the work done by the external forces. If we approximate the external forces by $F$ (i.e. friction forces are ignored) we have:

$$
\begin{equation*}
\frac{1}{2}|\Delta \rho| g X L \approx \frac{1}{2} \rho X V^{2} \tag{10.20}
\end{equation*}
$$

or

$$
\begin{equation*}
V \approx\left(g L \frac{|\Delta \rho|}{\rho}\right)^{\frac{1}{2}} \tag{10.21}
\end{equation*}
$$

This velocity can by adopted in the following definition of a Reynolds number:

$$
\begin{equation*}
R e_{b}=\frac{V L}{\nu}=\frac{\left(g L \frac{|\Delta \rho|}{\rho}\right)^{\frac{1}{2}} L}{\nu} \tag{10.22}
\end{equation*}
$$

However, in most literature is applied a parameter, which is the Reynolds number raised to the power 2 , i.e. defined as:

$$
\begin{equation*}
G r=\left(R_{b}\right)^{2}=\frac{g L^{3}}{\nu^{2}} \frac{|\Delta \rho|}{\rho} \tag{10.23}
\end{equation*}
$$

and the parameter $G r$ is named Grashof's number.
If the differences in density are caused by temperature, Grashof's number can be expressed as:

$$
\begin{equation*}
G r=\frac{g L^{3} \beta|\Delta T|}{\nu^{2}} \tag{10.24}
\end{equation*}
$$

after substitution of equation (10.11)

$$
\begin{equation*}
\Delta \rho=-\rho \beta \Delta T \tag{10.25}
\end{equation*}
$$

In situations where the boundary flow is driven by differences in density and by a flow outside the boundary layer at the velocity $v_{o}$, the influence of the differences in density on the course of the flow can be assessed by a comparison of Grashof's number and the usual Reynolds number squared, i.e. $R e^{2}=\left(v_{o} L / \nu\right)^{2}$.

In this context one has to distinguish between these two completely different types of flow in the boundary layer:

1) forced convection, where the flow in the boundary layer is mainly driven by the flow outside the boundary layer, i.e. differences in density are unimportant. This corresponds to $G r \ll R e^{2}$.
2) free convection, where the flow in the boundary layer is driven mainly by differences in density caused be e.g. differences in temperature or concentration. This corresponds to $G r \gg R e^{2}$.

For air having $\beta=3.4 \cdot 10^{-3}$, differences in temperature give this ratio between Grashof's number and the squared Reynolds number:

$$
\left(\frac{G r}{R e^{2}}\right)_{a i r}=\frac{g L \beta|\Delta T|}{v_{o}^{2}}=\frac{9.81 \cdot L \cdot 3.4 \cdot 10^{-3} \cdot|\Delta T|}{v_{o}^{2}}=\frac{0.03 L|\Delta T|}{v_{o}^{2}}
$$

10.1. BOUSSINESQ'S APPROXIMATION

## Chapter 11

## Transfer of Heat

In many cases the total transfer of heat between a body and the flow past the body is the main issue, and the details of the heat transport are only of minor importance.

The transfer of heat, denoted $q$, between the body and the flow is determined by Fourier's law applied at a point in the flow just outside the surface of the body. Thus

$$
\begin{equation*}
q\left(x_{1}\right)=-\left.\lambda \frac{\partial T}{\partial x_{2}}\right|_{x_{2}=0} \tag{11.1}
\end{equation*}
$$

where $\lambda$ is the thermal conductivity, $T$ is the temperature. The unit for $q$ is $\mathrm{J} / \mathrm{m}^{2} / \mathrm{sec}$.

### 11.1 Forced Convection in Boundary Layers

An exact solution (due to Blasius, see section 4.1.1) exists to the equations of motion for a laminar boundary layer.

No exact solutions exist for turbulent boundary layers, but use of the momentum equation for boundary layers with an assessed velocity profile can provide approximate solutions, where the accuracy of the calculated thickness of the boundary layer is approximately $5-10 \%$.

If variation of the density is neglected, the Navier-Stokes equation reads:

$$
\begin{equation*}
\frac{d\left(\rho v_{i}\right)}{d t}=\frac{\partial}{\partial x_{j}}\left(\nu\left(\frac{\partial\left(\rho v_{i}\right)}{\partial x_{j}}+\frac{\partial\left(\rho v_{j}\right)}{\partial x_{i}}\right)\right)-\frac{\partial p^{+}}{\partial x_{i}} \tag{11.2}
\end{equation*}
$$

If this version of the Navier-Stokes equation is compared to the transport equation for thermal energy $c_{p} \rho T$, which reads:

$$
\begin{equation*}
\frac{d\left(c_{p} \rho T\right)}{d t}=\frac{\partial}{\partial x_{j}}\left(\frac{\lambda}{c_{p} \rho} \frac{\partial\left(c_{p} \rho T\right)}{\partial x_{j}}\right)+\epsilon \rho \tag{11.3}
\end{equation*}
$$

it is seen that the Navier-Stokes equation may be interpreted as a transport equation for momentum $B_{i}=\rho v_{i}$.

Thus, it makes sense to believe that the approximate methods for the calculation of flow in boundary layers can be used to calculate the heat/substance transport in boundary layers.

### 11.1.1 Boundary Layers on a Plate at Zero Pressure Gradient

Application of the usual boundary layer approximation:

$$
\begin{equation*}
\frac{\partial}{\partial x_{1}} \ll \frac{\partial}{\partial x_{2}} \quad \text { and } \quad v_{2} \ll v_{1} \tag{11.4}
\end{equation*}
$$

gives that the equation for momentum $\left(B_{1}=\rho v_{1}\right)$ in a two-dimensional, steady flow without a pressure gradient reads:

$$
\begin{equation*}
v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}=\nu \frac{\partial^{2} v_{1}}{\partial x_{2}^{2}} \tag{11.5}
\end{equation*}
$$

with corresponding boundary conditions:
1)

$$
v_{1}=0 \text { and } v_{2}=0 \text { for } x_{2}=0
$$

2) 

$$
\frac{v_{1}}{v_{o}} \rightarrow 1 \quad \text { for } \quad x_{2} \rightarrow \infty
$$

Based on an assumption of similar profiles, equation (11.5) and the continuity can be solved numerically giving:

$$
\begin{equation*}
\frac{v_{1}}{v_{o}}=g_{1}\left(\frac{x_{2}}{\sqrt{\frac{\nu x_{1}}{v_{o}}}}\right) \quad \text { and } \quad \frac{v_{2}}{v_{o}}=g_{2}\left(\frac{x_{2}}{\sqrt{\frac{\nu x_{1}}{v_{o}}}}\right) \tag{11.6}
\end{equation*}
$$

where the functions $g_{1}()$ and $g_{2}()$ are known functions, first derived by Blasius (1908). The function $g_{1}()$ is seen in Fig. 4.2.

If the boundary layer approximation is used for the transport equation for thermal energy in a two-dimensional, steady flow gives:

$$
\begin{equation*}
c_{p} \rho\left(v_{1} \frac{\partial T}{\partial x_{1}}+v_{2} \frac{\partial T}{\partial x_{2}}\right)=\lambda \frac{\partial^{2} T}{\partial x_{2}^{2}}+\epsilon \rho \tag{11.7}
\end{equation*}
$$

The dissipation $\epsilon$ is unimportant for flows with small velocity gradients or large differences in temperature between the outer flow and the wall. Therefore the dissipation term is often neglected for small values $(\ll 1)$ of the Eckart number, $E_{c}$, defined as

$$
\begin{equation*}
E_{c}=\frac{v_{o}^{2}}{c_{p}\left(T_{w}-T_{o}\right)} \tag{11.8}
\end{equation*}
$$

where $v_{o}$ is the velocity outside the velocity boundary layer, $T_{o}$ is the temperature outside the thermal boundary layer, and $T_{w}$ is the temperature of the wall.

Neglecting dissipation makes it possible to rewrite the transport equation for thermal energy to:

$$
\begin{equation*}
v_{1} \frac{\partial T}{\partial x_{1}}+v_{2} \frac{\partial T}{\partial x_{2}}=\frac{\lambda}{c_{p} \rho} \frac{\partial^{2} T}{\partial x_{2}^{2}}=D_{J} \frac{\partial^{2} T}{\partial x_{2}^{2}} \tag{11.9}
\end{equation*}
$$

where $D_{J}$ is the thermal diffusivity defined as:

$$
\begin{equation*}
D_{J}=\frac{\lambda}{\rho c_{p}} \tag{11.10}
\end{equation*}
$$

If a non-dimensional temperature, $\theta$, is defined as:

$$
\begin{equation*}
\theta=\frac{T-T_{w}}{T_{o}-T_{w}} \tag{11.11}
\end{equation*}
$$

the transport equation for thermal energy reads:

$$
\begin{equation*}
v_{1} \frac{\partial \theta}{\partial x_{1}}+v_{2} \frac{\partial \theta}{\partial x_{2}}=D_{J} \frac{\partial^{2} \theta}{\partial x_{2}^{2}} \tag{11.12}
\end{equation*}
$$



Figure 11.1: Profiles of velocity and temperature in air, $\operatorname{Pr}=0.7, \partial p^{+} / \partial x_{1}=0$.
with boundary conditions:
1)

$$
\theta=0 \quad \text { for } \quad x_{2}=0
$$

2) 

$$
\theta \rightarrow 1 \quad \text { for } \quad x_{2} \rightarrow \infty
$$

The boundary layer equations for momentum and transport of thermal energy are two coupled differential equations, which can be solved numerically to any specified accuracy.

A single solution is known already, as the equations for momentum and transport of thermal energy and corresponding boundary conditions are identical for $D_{J}=$ $\nu$, i.e. if the Prandtl number is $\operatorname{Pr}=1$. In this case the profiles for velocity and temperature are coincident.

For $\operatorname{Pr} \neq 1$ the deviation between the temperature profile and the velocity profile only depends on the Prandtl number. In Fig. 11.1 both profiles are shown for air flow $(\operatorname{Pr}=0.7)$. It is seen that the extent of temperature profiles is largest. The opposite is true for fluids with $\operatorname{Pr}>1$. For water, $\operatorname{Pr}=7.0$.

After some algebra, including the use of equation (11.1), the transfer of heat from the wall to the fluids can be expressed as:

$$
\begin{equation*}
q\left(x_{1}\right)=0.332 \lambda \operatorname{Pr}^{1 / 3} \sqrt{\frac{v_{o}}{\nu x_{1}}}\left(T_{v}-T_{o}\right) \quad \text { for } \quad 0.6<\operatorname{Pr}<10 \tag{11.13}
\end{equation*}
$$

Heat transfer is often expressed by use of a non-dimensional quantity named the local Nusselt number. It is defined as:

$$
\begin{equation*}
N u_{x}=\frac{q \cdot x_{1}}{\lambda\left(T_{v}-T_{o}\right)} \tag{11.14}
\end{equation*}
$$

where $x_{1}$ is the distance from the leading edge of the plate. Comparison of the equations (11.13) and (11.14) gives:

$$
\begin{equation*}
N u_{x}=0.332 \operatorname{Pr}^{1 / 3} \sqrt{R e_{x}} \quad \text { for } \quad 0.6<\operatorname{Pr}<10 \tag{11.15}
\end{equation*}
$$

where Reynolds' number is defined as:

$$
\begin{equation*}
R e_{x}=\frac{v_{o} x_{1}}{\nu} \tag{11.16}
\end{equation*}
$$

### 11.1.2 Boundary Layers on a Plate at Zero Pressure Gradient, Approximate Calculation

Approximate methods based on assessed velocity profiles normally predict the thickness of a velocity boundary layer, $\delta$, with an accuracy of say $5-10 \%$. The same approximate methods will now be adopted to calculate the thickness of thermal boundary layers, $\delta_{T}$.

Consider a two-dimensional, steady, laminar flow of an incompressible fluid. Along a heated plate boundary layers for velocity and temperature are formed, see Fig. 11.2.


Figure 11.2: Definition sketch. Boundary layers for velocity and temperature on a heated plate.


Figure 11.3: Definition sketch. Thermal boundary layer. $Q$ is volume flux and $q$ is the transfer of thermal energy from plate to fluid.

The resulting inward transport of thermal energy through the control surface depicted in Fig. 11.3 is considered.

Inflow of thermal energy:
a a':

$$
\int_{0}^{\delta_{T}} \rho c_{p} T v_{1} d x_{2} \quad(\mathrm{~J} / \mathrm{s} / \mathrm{m})
$$

a' b':

$$
\rho c_{p} T_{o} d Q
$$

b b':

$$
-\left(\int_{0}^{\delta_{T}} \rho c_{p} T v_{1} d x_{2}+\frac{\partial}{\partial x_{1}} \int_{0}^{\delta_{T}} \rho c_{p} T v_{1} d x_{2} \cdot d x_{1}\right)
$$

a b :

$$
q \cdot d x_{1}
$$

Due to continuity the inflow of volume through the surface a' b' can be expressed as:

$$
\begin{equation*}
d Q=\frac{\partial}{\partial x_{1}} \int_{0}^{\delta_{T}} v_{1} d x_{2} \cdot d x_{1} \tag{11.17}
\end{equation*}
$$

Neglecting the thermal energy due to dissipation, the resulting inflow of thermal energy has to be zero, as the situation is steady, i.e. the temperature is constant at any fixed point. Mathematically this is expressed as:

$$
\begin{array}{r}
\int_{0}^{\delta_{T}} \rho c_{p} T v_{1} d x_{2}+\rho c_{p} T_{o} \frac{\partial}{\partial x_{1}} \int_{0}^{\delta_{T}} v_{1} d x_{2} \cdot d x_{1} \\
-\int_{0}^{\delta_{T}} \rho c_{p} T v_{1} d x_{2}-\frac{\partial}{\partial x_{1}} \int_{0}^{\delta_{T}} \rho c_{p} T v_{1} d x_{2} \cdot d x_{1}+q d x_{1}=0 \tag{11.18}
\end{array}
$$

or

$$
\begin{equation*}
q\left(x_{1}\right)=\frac{\partial}{\partial x_{1}} \int_{0}^{\delta_{T}} \rho c_{p}\left(T-T_{o}\right) v_{1} d x_{2} \tag{11.19}
\end{equation*}
$$

This equation is the local energy equation for thermal energy on integral form for a boundary layer. The left-hand side can also be expressed as:

$$
\begin{equation*}
q\left(x_{1}\right)=-\left.\lambda \frac{\partial T}{\partial x_{2}}\right|_{x_{2}=0} \tag{11.20}
\end{equation*}
$$

Substitution of assessed profiles of temperature and velocity into equation (11.19) makes it possible to calculate $\delta_{T}$ as shown below. The choice of profiles is not very important, and e.g. parabolic profiles may be used. The assessed velocity profile:

$$
\begin{equation*}
\frac{v_{1}}{v_{o}}=2 \frac{x_{2}}{\delta}-\frac{x_{2}^{2}}{\delta^{2}} \tag{11.21}
\end{equation*}
$$

substituted into the momentum equation for boundary layers gives:

$$
\begin{equation*}
\delta \approx 5.5 \sqrt{\frac{\nu x_{1}}{v_{o}}} \tag{11.22}
\end{equation*}
$$

Substitution of the assessed temperature profile:

$$
\begin{equation*}
\frac{T-T_{o}}{T_{v}-T_{o}}=1-2 \frac{x_{2}}{\delta_{T}}+\frac{x_{2}^{2}}{\delta_{T}^{2}} \tag{11.23}
\end{equation*}
$$

into equation (11.20) gives:

$$
\begin{equation*}
q\left(x_{1}\right)=-\lambda\left(T_{v}-T_{o}\right)\left(-\frac{2}{\delta_{T}}\right)=\frac{2 \lambda\left(T_{v}-T_{o}\right)}{\delta_{T}} \tag{11.24}
\end{equation*}
$$

If $q\left(x_{1}\right)$ is given, this expression makes it possible to calculate $\delta_{T}$ directly. However, in practice we want to find $q\left(x_{1}\right)$.

This means that $\delta_{T}\left(x_{1}\right)$ has to be calculated by a numerical solution of equation (11.19) after substitution of equation (11.24). If the partial derivative on the right-hand side of the equation is substituted by a finite difference, equation (11.19) reads:

$$
\begin{equation*}
\frac{2 \lambda\left(T_{v}-T_{o}\right)}{\delta_{T}} \approx \frac{\Delta}{\Delta x_{1}} \int_{0}^{\delta_{T}} \rho c_{p}\left(T-T_{o}\right) v_{1} d x_{2} \tag{11.25}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{2 \lambda\left(T_{v}-T_{o}\right)}{\delta_{T}} \approx \frac{\int_{0}^{\delta_{T}^{B}} \rho c_{p}\left(T-T_{o}\right) v_{1} d x_{2}-\int_{0}^{\delta_{T}^{A}} \rho c_{p}\left(T-T_{o}\right) v_{1} d x_{2}}{\Delta x_{1}} \tag{11.26}
\end{equation*}
$$



Figure 11.4: Definition sketch. Numerical calculation of thermal boundary layer

Assume that the conditions at section A including $\delta_{T}^{A}$ are known, see Fig. 11.4. The next step is to find the placing of the section, where the thickness of the thermal boundary layer is increased by $\Delta \delta_{T}$. The size of $\Delta \delta_{T}$ is chosen beforehand, i.e. $\delta_{T}^{B}=\delta_{T}^{A}+\Delta \delta_{T}$ is known, but $x_{1}^{B}=x_{1}^{A}+\Delta x_{1}$ is unknown. Equation (11.26) is then used to calculate the distance $\Delta x_{1}$ between section A and section B. Iteration is necessary, as $T_{v}$ and $\delta$ (and hereby $v_{1}$ ) depend on $x_{1}$. This calculation is repeated from one section to the next one until $\delta_{T}\left(x_{1}\right)$ is known along the entire plate. Finally the transfer of heat $q\left(x_{1}\right)$ is calculated by equation (11.24).

### 11.2 Free Convection in Boundary Layers

### 11.2.1 Boundary Layer at a vertical, heated plate

It is assumed that the fluid outside the boundary layer is at rest, i.e. $v_{o}=0$. Temperature and density at the wall are denoted $T_{w}$ and $\rho_{w}$, respectively, and outside the thermal boundary layer they are denoted $T_{o}$ and $\rho_{o}$. As $G r \gg R e^{2}$ for this flow, the flow type is free convection, where density variations have to be taken into account. This is done by use of the Navier-Stokes equation for non-homogeneous fluids, equation (10.13).

Moreover, assume two-dimensional steady flow and the usual boundary layer approximations to be valid, which implies that the component in the direction of the $x_{1}$-axis (positive upwards) reads:

$$
\rho_{o}\left(v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}\right)=-\frac{\partial p^{+}}{\partial x_{1}}-\rho_{o} \beta\left(T-T_{o}\right) g_{1}+\frac{\partial}{\partial x_{2}}\left(\rho_{o} \nu\left(\frac{\partial v_{1}}{\partial x_{2}}+0\right)\right)
$$

The pressure gradient within the boundary layer is (as usual) equal to the pres-
sure gradient outside the layer. Thus

$$
\frac{\partial p^{+}}{\partial x_{1}}=0
$$

within the boundary layer, as $p^{+}=0$ in the resting fluid outside the layer. Substitution of the pressure gradient and $g_{1}=-g$, yields after division by $\rho_{o}$ :

$$
\begin{equation*}
v_{1} \frac{\partial v_{1}}{\partial x_{1}}+v_{2} \frac{\partial v_{1}}{\partial x_{2}}=+\beta\left(T-T_{o}\right) g+\frac{\partial^{2} v_{1}}{\partial x_{2}^{2}} \tag{11.27}
\end{equation*}
$$

Having three unknowns, $v_{1}, v_{2}$ and $T$, two more equations are necessary to solve the problem. These equations are the continuity equation:

$$
\begin{equation*}
\frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}=0 \tag{11.28}
\end{equation*}
$$

and the transport equation for thermal energy rewritten to:

$$
\begin{equation*}
v_{1} \frac{\partial T}{\partial x_{1}}+v_{2} \frac{\partial T}{\partial x_{2}}=D_{J} \frac{\partial^{2} T}{\partial x_{2}^{2}} \tag{11.29}
\end{equation*}
$$

where $D_{J}=\lambda /\left(c_{p} \rho\right)$ is the thermal diffusivity and the effect of dissipation has been ignored.

The boundary conditions read:
1)

$$
v_{1}=0 \text { and } v_{2}=0 \quad \text { for } \quad x_{2}=0
$$

2) 

$$
v_{1} \rightarrow 0 \quad \text { for } \quad x_{2} \rightarrow \infty
$$

and
1)

$$
T=T_{v}\left(x_{1}\right) \quad \text { for } \quad x_{2}=0
$$

2) 

$$
T \rightarrow T_{o} \quad \text { for } \quad x_{2} \rightarrow \infty
$$

These equations can be numerically solved in the same way as the equations for forced convection of the boundary layer were solved. See e.g. Schlichting (1979).

## Bibliography

Blasius, H., 1908
Grenzschichten in Flüssigkeiten mit kleiner Reibung, Zeitschrift für Mathematik und Physik, Berlin, Tyskland, vol. 56, pp. 1-37.

Engelund, F.A., 1968
Hydrodynamik, Den private Ingeniørfond, Danmarks Tekniske Universitet, Lyngby

Fredsøe, J., 1990
Hydrodynamik, Den private Ingeniørfond, Danmarks Tekniske Universitet, Lyngby

Nielsen, P. V., 1994
Computational Fluid Dynamics in Ventilation, Aalborg University.
Pohlhausen, K., 1921
Zue näherungsweisen Integration der Differentialgleichung der laminaren Reibungsschicht, Zeitschrift für angewandte Mathematik und Mechanik, Berlin, Tyskland, vol. 1, pp. 252-268.

Prandtl, L., 1904
Über Flüssigkeitsbewegung bei sehr kleiner Reibung, Proceedings of the Third International Mathematics Congress, Heidelberg, Tyskland.

Prandtl, L., 1925
Über die ausgebildete Turbulenz, Zeitschrift für angewandte Mathematik und Mechanik, Berlin, Tyskland, vol. 5, pp. 136-139.

Rodi, W., 1984
Turbulence Models and their application in Hydraulics - A State of the Art Review, IAHR, Delft, Holland.

Schlichting, H., 1979
Boundary-Layer Theory (7. edition), McGraw-Hill, Inc.

Wilcox, D. C., 1994
Turbulence Modeling for CFD, DCW Industries, Inc., California, USA.
Wilcox, D. C., 2006
Turbulence Modeling for CFD, Third Edition, DCW Industries, Inc., California, USA.

Versteeg, H. K. \& Malalasekera, W., 1995
An introduction to Computational Fluid Dynamics. The Finite Volume Method, Longman Group Ltd.

## Appendix A

## The Gradient Theorem

The subject of this appendix is the calculation of the total pressure force on a closed surface in a fluid.

Denoting the closed surface $A$ bounding the volume $X$, means that the total pressure force on $A$ can be expressed as:

$$
\begin{equation*}
\vec{F}_{p}=\int_{A} p(-\overrightarrow{d A}) \tag{A.1}
\end{equation*}
$$

where $p$ is the pressure and $\overrightarrow{d A}$ is the outwards directed area vector. As it may be difficult to calculate the surface integral, we shall next derive a theorem, which can be applied in many cases with advantage.

Gauss's divergence theorem applied to the vector field $\vec{c}=-p \vec{k}$, where $\vec{k}$ is an arbitrary constant, reads:

$$
\begin{equation*}
\int_{A} \vec{c} \cdot \overrightarrow{d A}=\int_{X} \operatorname{div} \vec{c} d X \tag{A.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{A}-p \vec{k} \cdot \overrightarrow{d A}=\int_{X} \operatorname{div}(-p \vec{k}) d X=-\int_{X} \operatorname{div}(p \vec{k}) d X \tag{A.3}
\end{equation*}
$$

Here

$$
\begin{align*}
\operatorname{div}(p \vec{k}) & =\frac{\partial\left(p k_{1}\right)}{\partial x_{1}}+\frac{\partial\left(p k_{2}\right)}{\partial x_{2}}+\frac{\partial\left(p k_{3}\right)}{\partial x_{3}}=k_{1} \frac{\partial p}{\partial x_{1}}+k_{2} \frac{\partial p}{\partial x_{2}}+k_{3} \frac{\partial p}{\partial x_{3}} \\
& =\vec{k} \cdot \operatorname{grad} p \tag{A.4}
\end{align*}
$$

as $\vec{k}$ is a constant vector.

Substitution of this expression into equation (A.3) yields:

$$
\begin{equation*}
\int_{A}-p \vec{k} \cdot \overrightarrow{d A}=\int_{X}-\vec{k} \cdot \operatorname{grad} p d X \tag{A.5}
\end{equation*}
$$

As $\vec{k}$ is (still) a constant vector, equation (A.5) is rewritten to:

$$
\begin{equation*}
\vec{k} \cdot\left(\int_{A}-p \overrightarrow{d A}+\int_{X} \operatorname{grad} p d X\right)=0 \tag{A.6}
\end{equation*}
$$

The first integral in this equation is seen to be the total pressure force on $A$, and the equation is rewritten to:

$$
\begin{equation*}
\vec{k} \cdot\left(\vec{F}_{p}+\int_{X} \operatorname{grad} p d X\right)=0 \tag{A.7}
\end{equation*}
$$

As the direction of $\vec{k}$ is arbitrary, the vector within the parenthesis must be the null-vector, which gives:

$$
\begin{equation*}
\vec{F}_{p}=\int_{X}-\operatorname{grad} p d X \tag{A.8}
\end{equation*}
$$

This equation is sometimes named the gradient theorem, and it shows that the pressure force on an arbitrary, closed surface $A$ can be found as the volume integral of the negative pressure gradient over the volume bounded by the surface.

Notice that the pressure force from a constant pressure is always zero, as the gradient of a constant is zero!

In a resting fluid the pressure is constant, as $p_{h y d}=-\rho g z$ gives:

$$
\begin{equation*}
\operatorname{grad} p_{h y d}=(0,0,-\rho g) \tag{A.9}
\end{equation*}
$$

when the $x_{3}$-axis is vertical and positive upwards. Substitution of this pressure gradient into equation (A.9) yields:

$$
\begin{equation*}
\vec{F}_{p_{h y d}}=\int_{X}-\operatorname{grad} p d X=\int_{X}-(0,0,-\rho g) d X=(0,0, \rho g) X \tag{A.10}
\end{equation*}
$$

This force is the pressure force on the fluid body from the surrounding fluid. However, if $X$ is replaced by e.g a solid body at rest, the pressure distribution on $A$ is unchanged, resulting in the same pressure force. In this way it has been shown that the pressure force on an immersed body in a resting fluid is a force directed upwards and equal to the gravity force on the displaced volume of fluid. This was formulated by Archimedes back in antiquity, and today this pressure force is named the buoyancy.

## Appendix B

## On the Notation of Cartesian Tensors

The subject of this appendix is the index notation of Cartesian tensors.
The components of a 3-dimensional vector $\vec{x}$ are denoted $x_{1}, x_{2}, x_{3}$, i.e.

$$
\vec{x}=x_{1} \overrightarrow{e_{1}}+x_{2} \overrightarrow{e_{2}}+x_{3} \overrightarrow{e_{3}}=\left(x_{1}, x_{2}, x_{3}\right)
$$

where $\overrightarrow{e_{1}}, \overrightarrow{e_{2}}$ and $\overrightarrow{e_{3}}$ are unit vectors in the $x_{1^{-}}, x_{2^{-}}$and $x_{3^{\prime}}$-directions, respectively, of an ordinary cartesian coordinate system.

Sometimes equations can be expressed in a short form by use of index notation. The first convention of index notation reads:
if an index is a lower-case letter, it shall run through its range, which is normally 1, 2 and 3.

In general the range of the index $i$ of an $n$-dimensional vector is the set of integers from 1 to $n$.

The second convention of index notation reads:
a variable with one of the numbers 1, 2 or 3 as index, indicates the component of the variable in either the $x_{1}-, x_{2}$ - or $x_{3}$-direction.

Thus, with index notation the vector $\vec{x}$ can be expressed as $x_{i}$.
The third convention of index notation (Einstein's summation convention) reads:
repetition of an index in a term denotes summation with respect to that index over its range

An index that is summed over is called a dummy index and one that is not summed over is called a free index.

Consider two vectors $a_{i}$ and $b_{i}$. Due to the summation convention the scalar product (or dot product) of the vectors expressed by index notation reads:

$$
\begin{equation*}
a_{i} b_{i}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \tag{B.1}
\end{equation*}
$$

Since a dummy index simply indicates summation, it does not matter what symbol is being used. Thus $a_{i} b_{i}$ may be replaced by $a_{j} b_{j}$, which is obvious if the following expression (in ordinary notation) is considered:

$$
\begin{equation*}
\sum_{i=1}^{3} a_{i} b_{i}=\sum_{j=1}^{3} a_{j} b_{j} \tag{B.2}
\end{equation*}
$$

Another example of an equation with a dummy index is the continuity equation for an incompressible fluid:

$$
\begin{equation*}
\operatorname{div} \vec{v}=0 \quad \Leftrightarrow \quad \frac{\partial v_{1}}{\partial x_{1}}+\frac{\partial v_{2}}{\partial x_{2}}+\frac{\partial v_{3}}{\partial x_{3}}=0 \tag{B.3}
\end{equation*}
$$

which in tensor notation reads:

$$
\begin{equation*}
\frac{\partial v_{i}}{\partial x_{i}}=0 \tag{B.4}
\end{equation*}
$$

Next consider an example of an equation with one free index:

$$
\begin{equation*}
\operatorname{grad} p=\vec{k} \quad \Leftrightarrow \quad\left(\frac{\partial p}{\partial x_{1}}, \frac{\partial p}{\partial x_{2}}, \frac{\partial p}{\partial x_{3}}\right)=\left(k_{1}, k_{2}, k_{3}\right) \tag{B.5}
\end{equation*}
$$

in ordinary notation. In index notation equation (B.5) reads:

$$
\begin{equation*}
\frac{\partial p}{\partial x_{i}}=k_{i} \tag{B.6}
\end{equation*}
$$

So far only scalars and vectors have been considered. It is, however, also possible to express matrix equations in index notation. To do so, we use two indices. The first index corresponds to the row number and the second index to the column number. Consider a $3 \times 3$ matrix $[A]$ defined by:

$$
[A]=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13}  \tag{B.7}\\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

With index notation this matrix is expressed as $A_{i j}$.

If we post-multiply $[A]$ by a 3 x 1 column vector $\vec{x}$, the result is a 3 x 1 column vector $\vec{y}$, i.e.

$$
\left[\begin{array}{l}
y_{1}  \tag{B.8}\\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

With index notation and use of the summation convention, equation (B.8) reads:

$$
\begin{equation*}
y_{i}=A_{i j} x_{j} \tag{B.9}
\end{equation*}
$$

where $j$ is a dummy index and $i$ is a free index.

APPENDIX B. ON THE NOTATION OF CARTESIAN TENSORS

## Index

curl $\vec{v}$
definition, 16
added mass, 82,86
area vector, 13
Bernoulli's equation, 69
generalized, 71
body force, 48
boundary layer, 91
bulk modulus, 5
buoyancy, 188
closure coefficients, 155
conduction, 164
constitutive equation, 50, 53, 54
continuity equation, 15
continuity equation for fluctuations, 150
Coriolis force, 49
Couette-flow, 28, 48
deformation tensor, 23
density, 2
diffusion, 63
diffusion coefficient, 63, 159
diffusivity, 63, 159
dipole flow
plane, 75
dipole strength, 76
discharge, 38
displacement thickness, 95
dissipation, 65
dissipation length, 131
$\operatorname{div} \vec{v}$
polar coordinates, 74
divergence, 14
dynamic pressure $p^{+}, 56$

Eckart's number, 178
eddy viscosity, 121, 146
eigenvalue, 24
eigenvector, 24
energy equation, 166
equation of motion, 50
equilibrium layer, 153
Euler's equation, 68
Fick's 1st law, 63
flow
laminar, 9
non-uniform, 8
steady, 7
turbulent, 9
two-dimensional, 7
uniform, 8
unsteady, 8, 60
fluid
ideal, 68
newtonian, 53
fluid particle, 2
forced convection, 174
Fourier's law, 164
free convection, 174
free turbulence, 140, 148
friction velocity, 123
Gauss' divergence theorem, 14
$\operatorname{grad} \varphi$
polar coordinates, 73
gradient theorem, 100, 187, 188
Grashof's number, 174
hydrodynamic mass, 82, 86
hydrostatic pressure distribution, 56, 58
ideal fluid, 68
instantaneous velocity field, 21
isentropic stress state, 51
jet
submerged, 140
Kármán's universal constant, 120
kinetic energy turbulent, 129
Kronecker's symbol, 24
laminar flow, 9
Laplace's equation, 35
length scale of turbulence, 131
line sink, 72,75
line source, 72
mean flow, 10, 106
mechanical energy, 164
mixing length, 119
mixture layer, 140
momentum equation, 96
momentum equation, boundary layer, 98

Navier-Stokes' equation, 55
turbulent flow, 115
Newton's formula, 4
newtonian fluid, 53
Nusselt's number, 180
particle path, 7
plane dipole flow, 75
point of separation, 105
Poiseuille-flow, 57
Poisson's equation, 39
potential flow, 31
Prandtl's number, 165
turbulent, 168
preserved turbulence, 129
$p^{+}, 56$
pressure distribution
hydrostatic, 56, 58
pressure gradient, 56
production of turbulent energy, 131
rate of change local, 11 substantial, 12
Reynolds' number, 10
Reynolds' stresses, 118
rot $\vec{v}$
definition, 16
polar coordinates, 73
rough bottom, 126
separation, 81, 103
shear stress, 4
smooth bottom, 123
source strength, 73
spin tensor, 23
steady turbulent flow, 111
Stokes' distance, 61
Stokes' theorem, 17
stream function, 36
streamline, 8
stress, 2
stress state
isentropic, 51
stress tensor, 43
stress vector, 40
sublayer
viscous, 124
submerged jet, 140
surface force, 42
technical turbulence theory, 121
tensor notation, 189
thermal conductivity, 165
thermal diffusivity, 165
turbulent, 168
transfer of heat, 176
transport equation for thermal energy, 166
turbulent flow, 168
transport equation for $k, 152$
turbulence, 106
free, 140
preserved, 129
turbulence models, 146
$k \epsilon$-model, 155
$k \omega$-model, 157
$k$-model, 149
two-equation models, 155
mixing length model, 147
one-equation model, 149
turbulence theory technical, 121
turbulent
Prandtl number, 168
thermal diffusivity, 168
turbulent energy, 129
turbulent flow, 9
turbulent Prandtl number, 168
turbulent thermal diffusivity, 168
two-dimensional flow, 7
uniform flow, 8
unsteady flow, 60
varying flow, 8
velocity field, 7
instantaneous, 21
velocity gradient-tensor, 22
velocity potential, 31
viscosity
dynamic, 4
eddy, 121
kinematic, 4
viscous shear stress, 117
viscous sublayer, 124
volume flux, 38
vorticity meter, 17
vorticity transport equation, 62
wake, 140

