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Abstract— In this contribution, a low-complexity particle filter
(PF) is proposed to track the parameters of the signal reflected
by a target illuminated with a digital-video-broadcast terrestrial
(DVB-T) signal. The tracked parameters are the delay (time
of arrival), the azimuth and elevation of arrival, the Doppler
frequency, the complex amplitude of the target signal, as well as
the rates of change of all but the last parameter. The proposed
PF tracks these parameters based on samples of the target signal
by assuming that the temporal behaviour of these parametersis
governed by a multi-dimensional linear state-space model.The
algorithm has an additional resampling step specifically designed
to cope with the highly concentrated multi-dimensional posterior
probability density function of the parameters. This step allows
for tracking the parameters of the target signal with only a
few particles, e.g. 50, leading to low computational complexity.
Simulation results show that the PF outperforms the maximum-
likelihood estimator applied to individual samples of the target
signal in terms of higher accuracy and robustness. Under certain
conditions usually met in reality the proposed PF can be used
to track the parameters of the signals contributed by individual
targets in multi-target scenarios.

Index Terms— Target tracking, bistatic passive radar, antenna
array, maximum likelihood estimation, terrestrial digita l-video-
broadcasting, and particle filter.

I. I NTRODUCTION

Target tracking algorithms can be grouped into two cat-
egories: the conventional algorithms [1], [2], [3], [4] and
the track-before-detection (TBD) algorithms proposed recently
[5], [6], [7], [8]. The conventional algorithms operate in three
successive stages [3], [4], [8], which arei) estimation of the
parameters, such as delay (time of arrival), Doppler frequency
and angle of arrival, of the signals reflected by targets, and
detection of the target signals using thresholding techniques
[4], ii) association of the parameter estimates to individual
tracks, one for each target, andiii) estimation of the target
trajectories in a Cartesian coordinate system from these tracks.
In some conventional algorithms, e.g. the particle-filter-based
method proposed in [2], [3], the latter two stages are performed
jointly as one single stage. The TBD algorithms exhibit two
stages [5], [6], [7], i.e.i) estimation of the dispersion power
spectrum from each sample of the received signal, andii)
estimation of the target trajectories from the power spectrum
estimates. Since the TBD algorithms do not implement any

This work was supported by Federal Department for Defence, Civil
Protection and Sports, armasuisse, Science and Technology, Switzerland.

detection operation based on thresholding, they are capable of
tracking weak targets that are undetected with the conventional
approaches. Following the nomenclature used in [9] we refer
to the (complex baseband) signal reflected by a target at the
output of the radar receiver as the “target signal” in the sequel.

The tracking algorithms in the above two categories share
the common feature that the basis for extraction of target
position trajectories, i.e. the estimates of the target signal
parameters in the conventional algorithms and the estimates
of the dispersion power spectrum in the TBD algorithms, are
all computedindependentlyfrom individual observations of
the received signal. Thus these algorithms do not consider the
behaviour of the temporal evolution of the parameters of the
target signals. As we will see, exploiting this informationleads
to a significant performance increase in terms of estimation
accuracy and robustness.

In this contribution, we propose a particle filter (PF) for
tracking of the multi-dimensional parameters of the signal
induced by one target. The temporal evolution of the param-
eters is characterized using a linear state-space model. We
implement the PF in a passive bistatic radar system which
uses a digital-video-broadcasting terrestrial (DVB-T) signal
as “illuminator of opportunity”. The receiver is equipped
with multiple antennas which are activated in a time-division-
multiplexing (TDM) mode. Simulations are performed in a
single-target scenario for evaluation of the performance of the
proposed PF.

The organization of the paper is as follows. Section II
presents an observation model of the target signal and a state-
space model characterizing the time-evolution behaviour of
the parameters of the observation model. In Section III, the
proposed PF is formulated. Section IV describes the results
of simulation studies that illustrate the performance of the PF.
Concluding remarks are addressed in Section V.

II. SIGNAL MODEL

In this section, an observation model for the target signal
is introduced. Then, a state-space model is used to describe
the time-evolving behaviour of the signal parameters. For
simplicity of the presentation, these models are discussed
while considering a single-target scenario with one DVB-T
transmitter (Tx) and one radar receiver (Rx) and the received
signal is assumed to contain only the target signal and noise.
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Fig. 1. A TDM switching mode used in the radar receiver.

A. Observation Model

In the considered bistatic radar, the Rx is equipped with
M antennas. A switch is used to activate these antennas
in a predefined TDM mode. Compared to parallel schemes
where all receive antennas are activated simultaneously, this
switching structure can reduce the hardware cost and the
complexity of the equipment calibration. An example of TDM
mode is depicted in Fig. 1. In this mode, the Rx antennas are
activated sequentially from No.1 to M in one measurement
cycle. A measurement cycle is referred to as the procedure in
which all receive antennas are scanned once. In Fig. 1,k and
m represent respectively the measurement cycle index and the
antenna index,Ts denotes the sensing period during which an
antenna is activated, the switching periodTr is referred to as
the time interval between consecutive sensing periods, andthe
cycle periodTcy denotes the interval between two consecutive
measurement cycles.

In thekth measurement cycle, the complex baseband signal
received in the sensing period for themth Rx antenna reads

yk,m(t) = x(t; θk,m) + nk,m(t), t ∈ [tk,m, tk,m + Ts), (1)

wheretk,m denotes the beginning of this sensing period, and
the parameter vector

θk,m
.
= [αk,m, νk,m, φk,m, θk,m, τk,m]

contains the complex gainαk,m, Doppler frequencyνk,m,
azimuthφk,m and elevationθk,m of arrival, and delayτk,m

of the target signal in this sensing period.
The signal contributionx(t; θk,m) in (1) is written as

x(t; θk,m) =αk,m exp(j2πνk,mt) · cm(φk,m, θk,m)

· u(t − τk,m), t ∈ [tk,m, tk,m + Ts), (2)

wherecm(φ, θ) represents the response of themth antenna in
the direction uniquely determined by azimuthφ and elevation
θ, while u(t − τ) denotes the DVB-T signal delayed byτ .
In this contribution, we assume thatu(t) is known. This is
a realistic assumption, as in most passive radar systems the
transmitted signal can be obtained by using a reference antenna
which receives the signals directly from the Tx [1], [10]. The
noise nk,m(t) in (1) is a zero-mean Gaussian process with
spectrum heightσ2

n. For notational convenience, we use the
vector yk to represent all samples received within thekth
measurement cycle andy1:k

.
= {y1, y2, . . . , yk} to denote

the observations up to thekth cycle.
We consider the scenario where the Rx switch operates fast

enough, such that the approximationθk,m ≈ θk holds for
m = 1, . . . , M . Then, the target signalx(t; θk,m) in (2) is
approximated by

x(t; θk) =αk exp(j2πνkt) · cm(φk, θk)

· u(t − τk), t ∈ [tk,m, tk,m + Ts). (3)

From (3), we see that in thekth measurement cycle, the
transmitted signal is modulated at the receiver by a phasor
depending on the Doppler frequencyνk. Thus, it is possible to
use the signals received in one measurement cycle to estimate
the Doppler frequency.

B. State-Space Model

We use a state-space model to describe the transition of the
signal parameters across measurement cycles. We define the
state vector in thekth measurement cycle as

Ωk
.
=





ϕk

αk

∆k



 , (4)

where the vectors

ϕk

.
=







τk

φk

θk

νk







,∆k
.
=







∆τk

∆φk

∆θk

∆νk







and αk
.
=

[
|αk|

arg(αk)

]

(5)

represent respectively the “dispersion parameter” vector, the
“rates of change” vector, and the “(complex) gain” vector.
In (5), |αk| and arg(αk) represent the magnitude and the
argument ofαk respectively.

The state vector at thekth cycle is modelled as




ϕk

αk

∆k





︸ ︷︷ ︸

Ωk

=





I4 04×2 TcyI4

Jk I2 02×4

04×4 04×2 I4





︸ ︷︷ ︸

F k





ϕk−1

αk−1

∆k−1





︸ ︷︷ ︸

Ωk−1

+





04×1

vα,k

v∆,k





︸ ︷︷ ︸

vk

, (6)

where In represents then × n identity matrix, 0b×c is the
all-zero matrix of dimensionb × c, and the matrixJk reads

Jk =

[
0 0 0 0
0 0 0 2πTcy

]

.

The vectorvk in (6) contains the driving processvα,k of the
gain vector and the driving processv∆,k of the rates of change
vector, i.e.

vα,k
.
=

[
v|α|,k

varg(α),k

]

and v∆,k
.
=







v∆τ,k

v∆φ,k

v∆θ,k

v∆ν,k







. (7)

The entriesv(·),k of vα,k andv∆,k are independent zero-mean
Gaussian random variables with known variances:v(·),k ∼
N (0, σ2

(·)).

III. T HE PARTICLE FILTER

From (1) and (6), we see that the received signalyk depends
only on the current stateΩk and is conditionally independent
of the other states givenΩk. Utilizing this property, a PF
can be used to estimate the posterior probability density
function (pdf) p(Ω1:k|y1:k) sequentially [11]. Here,Ω1:k

.
=

{Ω1, . . . ,Ωk} denotes the sequence of state vectors from
the 1st to the (k)th measurement cycle. The facts that the
parameter space is multi-dimensional1 and that the temporal

1The parameter space has dimension up to 14 in the specular-path scenario
[12] and up to 28 in the dispersive-path scenario [13].
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and spatial observation aperture has to be large in order to
achieve high resolution pose a noticeable challenge when using
the PF to trackΩk. Indeed in this case, the posterior pdf
p(Ω1:k|y1:k) is highly concentrated in the multi-dimensional
parameter space. It is then difficult to “steer” the particle
sets to the regions where most of the posterior probability
mass is localized. The proposed PF is specifically designed
to solve this problem. In this section we present the PF
while considering a single-target scenario. We also discuss the
extension of the PF for tracking the parameters of the signals
contributed by multiple targets.

A. Initialization of the Particle States

In this contribution, we use the proposed PF to trackΩk

from the third measurement cycle on. The state for theith
particle at the second measurement cycle, denoted byΩ

i
2, is

initialized with the parameter estimates obtained by usinga
sample-based maximum likelihood (ML) method. This method
computes estimates of the parameters of the target signal
from each individual sample gathered from the measurement
cycles. Thus, the method assumes that the parameters of the
target signal samples in different measurement cycles are in-
dependent. The dispersion parameter vectorϕi

2 is set equal to
its corresponding sample-based ML estimate computed from
the signal sample collected at the second measurement cycle.
The rate of change parameters are initialized by taking the
difference between the sample-based ML estimates obtained
in the first and second measurement cycles.

B. The Steps of the PF

When a new observation, sayyk, is available, the PF
performs the following steps.

Step 1: Predict the states of particles and calculate their
importance weights. The output from the previous obser-
vations is the set{Ωi

k−1, w
i
k−1}, where wi

k−1 denotes the
importance weight of theith particle. We first predict the states
of all particles for thekth measurement cycle. The rates of
change vector∆i

k is updated as

∆
i
k = ∆

i
k−1 + vi

∆,k, i = 1, . . . , I, (8)

whereI denotes the total number of particles, and the vector
vi
∆,k is drawn from aN (0,Σv∆

) distribution. The diagonal
covariance matrixΣv∆

reads

Σv∆
= diag(σ2

∆τ , σ2
∆φ, σ2

∆θ, σ
2
∆ν). (9)

The values of the diagonal elementsσ2
∆(·) with (·) replaced

by τ , φ, θ or ν, are predetermined. The dispersion parameter
vectorϕi

k is calculated to be

ϕi
k = ϕi

k−1 + ∆
i
k. (10)

The complex gainαi
k is calculated analytically as

αi
k =

(si
k)Hyk

‖si
k‖

2
, (11)

where (·)H represents the Hermitian transpose,‖ · ‖ denotes
the Euclidian norm of the given argument, and the vectorsi

k

contains the components

si(t; ϕi
k) = exp(j2πνi

kt)cm(φi
k, θi

k)u(t − τ i
k),

t ∈ [tk,m, tk,m + Ts), m = 1, . . . , M.

The importance weights of the particles are calculated as

wi
k =

wi
k−1p(yk|Ω

i
k)

I∑

i=1

wi
k−1p(yk|Ω

i
k)

, i = 1, . . . , I (12)

with

p(yk|Ω
i
k) ∝ exp(−

1

2σ2
n

‖yk − αi
ksi

k‖
2). (13)

Step 2: Additional resampling. In a radar system which
makes use of a multi-element Rx array and wideband trans-
mission, e.g. of DVB-T signals, the number of temporal-spatial
samples available in one measurement cycle is usually large.
As a consequence, a significant mass of the posterior pdf
p(Ω1:k|y1:k) is concentrated around its modes. As the path
parameters evolve over time, the particles that are distributed
in Step 1 can be too diffuse to “catch” the posterior probability
mass. One brute-force solution is to employ a large number
of particles. However the resulting complexity prohibits any
practical implementation. This problem can be overcome with
low complexity by using the local-likelihood-sampling method
[14] and the local-importance-sampling method [15], both of
which introducing window functions in the computation of
the particle weights. It can also be solved by distributing
the particles uniformly within a subset of the parameter
space or using multi-hypothesis [16], [17]. However, all these
methods have the drawback that the weighted particles do
not approximate the true posterior densityp(Ω1:k|y1:k), and
consequently the estimation results can be artifacts.

In this contribution, we introduce an additional resampling
step in which two techniques are used for allocation of
particles without misinterpreting the posterior density.This
step is activated when the importance weights of the particles
obtained from (12) are all negligible. The first technique
consists in dropping some components inyk when calculating
the importance weights. We denote the remained components
of yk by ỹk. As the number of components iñyk is less
than that inyk, the posterior pdfp(Ωk|ỹk, y1:k−1) is less
concentrated than the original pdfp(Ωk|y1:k). Thus, the
particles have higher probability to get significant importance
weights.

The second method consists in computing the importance
weights as

w̃i
k = log p(yk|Ω

i
k) + log wi

k−1. (14)

The obtained set{Ωi
k, w̃i

k} is an estimate of the function
log p(Ω1:k|y1:k). This function exhibits the same modes as
p(Ω1:k|y1:k) but it has a wider curvature in the vicinities of
the modes. So, the probability to get non-negligible importance
weights is enhanced.

Based on these two methods, we propose an additional
resampling step which can be implemented with the following
pseudo-code.

for n = 1 to N do
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Step 2.1 Select vector̃yn
k which contains some of the

components ofyk. The number of components iñyn
k

should increase with respect ton.
Step 2.2 Calculate the importance weights̃wi

k, i =
1, . . . , I according to (14) withyk replaced bỹyn

k .
if {w̃i

k} contains non-significant values, e.g. less than
max{w̃i

k} − 3, then
Step 2.3 Find the indicesA = {is} of the particles
with significant importance weights. LetD denote the
number of particles with non-significant weights.
Step 2.4 GenerateD new particles with states drawn
from p(Ωk|Ω

j(Ad)
k−1 ), d = 1, . . . , D. Here,Ad denotes

the dth element ofA, and j(Ad) is the index of
a particle in the(k − 1)th observation from which
the Adth particle in thekth observation is generated.
Replace the particles that have non-significant weights
by the new particles.
Step 2.5 Update the importance weightswi

k−1 as

wi
k−1 = J(i)−1w

j(i)
k−1, i = 1, . . . , I, (15)

whereJ(i) represents the total number of new particles
generated using thej(i)th particle in the(k − 1)th
observation. Go toStep 2.2.

end if
end for

Step 3: Standard resampling. The operations performed in
this step are similar to those shown in the loop inStep 2 except
that the importance weights̃wi

k are replaced bywi
k and the

observatioñyn
k is substituted withyk.

Step 4: Estimate the posterior pdf. The estimate of the
posterior pdf can be approximated based on the particles and
their importance weights according to

p̂(Ω1:k|y1:k) =
I∑

i=1

wi
kδ(Ω1:k − Ω

i
1:k). (16)

This pdf estimate can be used to estimate the expectation of
a function ofΩ1:k. For example, the state vectorΩ1:k can be
estimated as

Ω̂1:k =

I∑

i=1

Ω
i
1:kwi

k. (17)

C. Extension to Multi-Target Scenarios

The proposed PF can be multiplicated to cope with a
multiple-target scenario in the case where the parameters of
any two different target signals are always distinct. Notice that
this situation is frequently encountered in reality. For instance,
even though two targets are close to each other in space,
they are likely to differ in velocity and therefore the signals
reflected by them differ in Doppler frequency. In this case
each PF tracks the parameters of the signal of one specific
target. Its particle states are initialized using the parameter
estimates of the signal contributed by the corresponding target.
The Space-Alternating Generalized Expectation-Maximization
(SAGE) algorithm [18] can be used to compute approximates
of the ML estimates of these parameters with low complexity.

Target

z [m]

z [m]

x [m]

x [m]

y [m]

y [m]

Tx

Rx

(a)

(b)

Fig. 2. Synthetic trajectories of an air-borne target.

IV. SIMULATION STUDIES

Simulation studies are conducted to evaluate the perfor-
mance of the proposed PF in a single-target scenario. We
consider a bistatic radar system with one Tx broadcasting a
DVB-T signal defined in [19] as “illuminator of opportunity”
and one Rx. The locations of the Tx and Rx are known
in advance. The Rx is equipped with a6 × 6 planar array
with isotropic antennas. The orientation of the array, i.e.the
direction with φ = 0◦ and θ = 0◦, points towards the Tx
location. The Rx is equipped with a switch that operates in the
TDM mode depicted in Fig. 1. Table I shows the specification
of the DVB-T signal and the timing of the data acquisition
considered in the simulations. The sensing periodTs is set
equal to the duration of one DVB-T orthogonal frequency
division multiplexing (OFDM) symbol.

Table II reports the intrinsic resolution ability and the
estimation range of the considered bistatic radar system. The
resolutions in azimuth and elevation of arrival are computed
according to [18, Eq. 31]. The resolution in Doppler frequency
equals1/[(M − 1)Tr + Ts] [20]. The delay estimation range
reported in Table II is relative to the delay of the reference
signal.

In the considered synthetic environment, an air-borne target
flies with a constant speed of500 km/h along a trajectory
between the Tx and Rx locations, which are fixed. Fig. 2
(a) depicts the Tx and Rx locations, and the target trajectory
in a 3-dimensional Cartesian coordinate system. Fig. 2 (b)
illustrates the “zoomed-in” image of a fragment of the target
trajectory.

TABLE I

PARAMETERS OF THEDVB-T SIGNAL AND DATA ACQUISITION TIMING

CONSIDERED IN THE SIMULATIONS

Item Value
DVB-T mode [19] 2K
Center carrier frequency 300 MHz
Sensing periodTs 0.28 ms
Switching periodTr 2 · Ts

Cycle intervalTcy 1000 · Ts
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Fig. 3. True parameter trajectories and their estimates obtained using the PF and the ML method.

In this synthetic environment the DVB-T signal broadcast
by the Tx is reflected by the target before it is received at
the Rx. The parameters characterizing the target signal can
be related to the locations of the Tx and the Rx, and the
target trajectory. The delay of the target signal at thekth
measurement cycleτk reads

τk = (‖rtg,k − rTx‖ + ‖rtg,k − rRx‖)/c, (18)

whererTx andrRx denote the location vector of the Tx and
the Rx respectively,rtg,k is the target location vector at the
beginning of thekth measurement cycle, andc denotes the
speed of light. The elevation and azimuth of arrival of the
signal are computed to be respectively

θk = cos−1(ωk,z) (19)

φk = cos−1(ωk,x/
√

ω2
k,x + ω2

k,y), (20)

whereωk,x, ωk,y, ωk,z are the entries of the vector

ωk =
rtg,k − rRx

‖rtg,k − rTx‖
. (21)

The Doppler frequency is approximated as

νk ≈ λ−1T−1
cy (τk − τk−1) · c, (22)

where λ is the wavelength. The rate of change parameters
∆(·)k are computed to be

∆(·)k = T−1
s [(·)k − (·)k−1] (23)

TABLE II

INTRINSIC RESOLUTION ABILITY AND ESTIMATION RANGES OF THE USED

PASSIVE RADAR SYSTEM.

Dimension Intrinsic resolution Estimation range
Azimuth ≈ 19.1◦ [0◦, 180◦)
Elevation ≈ 19.1◦ [0◦, 180◦)

Delay 0.109 µs [0, 280] µs
Range 32.8 m [0, 84] km

Doppler frequency 50 Hz [−457, 457] kHz

with (·) being replaced byτ , φ, θ or ν. The black solid curves
shown in Fig. 3 depict an example of time evolution of the true
values of these parameters generated with the linear state-space
model (6) over an interval corresponding to50 measurement
cycles. For simplicity,α1 = exp(jπ/4) is used and the
driving processesw|α|,k and warg(α),k, k = 1, . . . , K with
K representing the total number of considered measurement
cycles are set to zeros. The samplesyk, k = 1, . . . , K of
the received signal are generated using the observation model
(1). The signal-to-noise ratio (SNR) is set to−10 dB, which
complies with the measurement results reported in [21].

The parameter estimates obtained by applying the proposed
PF to the sequence of these samples are also depicted in Fig.
3. The estimates of the dispersion parameters obtained by ap-
plying the sample-based ML method to the signals received in
individual cycles are shown as well. It can be observed that the
PF is capable of tracking the signal parameters over the whole
considered observation interval. The ML estimator exhibits
significant estimation error in measurement cycle 28, resulting
in a “loss-of-track” error. Additional simulation resultsnot
reported here demonstrate that the PF does not exhibit “loss-
of-track” errors provided the numberI of particles is larger
than 20. From Fig. 3, we also observe that the RMSEEs are
decreasing asI increases. This behaviour is more evident in
tracking the rates of change parameters (see the figures in the
right column of Fig. 3).

The root-mean-square-estimation-errors (RMSEEs) ob-
tained using the PFs withI = 20, 40, . . . , 200 are depicted in
Fig. 4. It is observed that the RMSEEs decrease as the number
I of particles increases and stabilize forI ≥ 50. Simulation
results not shown here also demonstrate that withI ≥ 40
the PF returns RMSEEs lower than those obtained with the
sample-based ML estimator for all considered parameters.

It is worth mentioning that the comparison between the
proposed PF and the sample-based ML parameter estimator
is not fair, since the latter estimator does not exploit the
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Fig. 4. RMSEEs of the PF versus the numberI of used particles.

knowledge that the signal parameters are generated using a
linear state-space model. However, this comparison evidences
that by taking into account the time-evolution behaviour ofthe
parameters, algorithms, e.g. the PF proposed here, yield higher
estimation accuracy and robustness compared to conventional
algorithms that do not exploit this dynamics. Another benefit
of using the proposed PF is that, the problem of association of
the parameter estimates computed from the individual signal
samples is inherently solved. Therefore, the association step
required in some of the conventional tracking algorithms, e.g.
[1], [4], is unnecessary.

V. CONCLUSIONS

In this contribution, we developed a particle filter (PF) for
tracking of the multi-dimensional parameters of the received
signal contributed by a moving target. The tracked parameters
are the delay (time of arrival), the azimuth and elevation of
arrival, the Doppler frequency, the complex amplitude of the
target signal, as well as the rates of change of all but the
last parameter. The dynamics of these parameters is described
using a linear state-space model. The proposed PF accurately
estimates the posterior probability density function (pdf) of
these parameters from observations of the target signal with a
small number of particles. A modified step that accounts for
the high concentration of the posterior probability distribution
of the parameters makes this possible.

We implemented the PF in a bistatic radar system that
uses digital-video-broadcast terrestrial (DVB-T) transmission
as “illuminator of opportunity”. Simulation results show that
the proposed PF is able to track the parameters of a target
signal with a small number of particles, resulting in a low
computational complexity. The PF returns lower estimation
errors and is more robust than the maximum likelihood esti-
mator applied to individual signal samples.

The proposed PF can be used to track the parameters of
the individual signals contributed by multiple targets when
the states of signal parameter vectors for different targets are
distinct. Notice that this situation is frequently encountered in
reality. For instance, even though two targets are close to each

other in space, they are likely to differ in velocity and therefore
the signals reflected by them differ in Doppler frequency.
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