Moderate consumption of marine n-3 fatty acids is associated with a lower risk of atrial fibrillation – a Danish cohort study

Rix, Thomas Andersen; Joensen, Albert Marni; Lundbye-Christensen, Søren; Riahi, Sam; Schmidt, Erik Berg; Overvad, Kim

DOI (link to publication from Publisher):
10.1093/europace/eut173

Publication date:
2013

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Moderate consumption of marine n-3 fatty acids is associated with a lower risk of atrial fibrillation – a Danish cohort study

Thomas Andersen Rix1, MD; Albert Marni Joensen1, MD, PhD; Sam Riahi1,2, MD, PhD; Søren Lundbye-Christensen3, MSc, PhD; Anne Tjønneland4, MD, PhD, DMSc; Erik Berg Schmidt1, MD, DMSc; Kim Overvad1,4, MD, PhD

1Department of Cardiology, Aalborg AF Study Group, Center for Cardiovascular Research, Aalborg University Hospital, Denmark
2Department of Health Science and Technology, Faculty of Medicine, Aalborg University
3Danish Cancer Society Research Center, Copenhagen, Denmark
4Section for Epidemiology, Department of Public Health, Aarhus University, Denmark

Purpose
Some studies have reported a beneficial effect of fish intake with respect to development of atrial fibrillation (AF), but results have been inconsistent. The aim of this study was to examine the hypothesis of a negative association between consumption of marine n-3 polyunsaturated fatty acids (PUFA) and the development of AF.

Methods
A total of 57,053 Danish participants 50 to 64 years of age were enrolled into the Diet, Cancer, and Health Cohort Study between 1993 and 1997. Baseline data included information on health, medication, lifestyle, and a semi-quantitative food frequency questionnaire including 20 questions regarding intake of fish and food products containing fish, as well as measures of anthropometry, blood pressure, and blood samples. Follow-up was done using the National Patient Registry, which records diagnoses from in-patient and out-patient hospital visits in Denmark. The validity of the diagnosis AF was high with a positive predictive value of 92.6 %. Data was analysed in a pre-specified, sex-stratified, multivariate Cox regression model with age as the time axis and modelling how changes in intake affect the risk of AF. The validity of the diagnosis AF was high with a positive predictive value of 92.6 %. Data was analysed in a pre-specified, sex-stratified, multivariate Cox regression model with age as the time axis and modelling how changes in intake affect the risk of AF.

Results
During 13.6 years of follow-up, a total of 3,425 incident cases of AF were registered. In multivariate analyses, the association between consumption of n-3 PUFA and risk of incident AF was U-shaped with the lowest risk of AF at moderate amounts of intake near the median consumption in this population (0.63 g/day) (Figure 2). Similarly, when comparing quintiles of n-3 PUFA intake, a 13% significantly lower risk of incident AF was seen in the middle quintile (Q3) compared to the lowest quintile of intake (Table 1).

Table 1. Quintiles of dietary intake of marine n-3 PUFA and risk of incident atrial fibrillation

<table>
<thead>
<tr>
<th>Quintile</th>
<th>Hazard Ratio (HR)</th>
<th>95% Confidence Interval (CI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 <0.39 g/day</td>
<td>0.95</td>
<td>0.86-1.03</td>
<td>0.22</td>
</tr>
<tr>
<td>Q2 0.39-0.53 g/day</td>
<td>0.93</td>
<td>0.84-1.03</td>
<td>0.24</td>
</tr>
<tr>
<td>Q3 0.54-0.73 g/day</td>
<td>0.88</td>
<td>0.78-0.99</td>
<td>0.02</td>
</tr>
<tr>
<td>Q4 0.74-0.99 g/day</td>
<td>0.87</td>
<td>0.77-0.99</td>
<td>0.02</td>
</tr>
<tr>
<td>Q5 >0.99 g/day</td>
<td>1.00</td>
<td>0.94-1.06</td>
<td>0.95</td>
</tr>
</tbody>
</table>

P<0.05 indicates association with AF. Adjusted for hypertension, symptomatic blood pressure, body-mass index, waist circumference, smoking, alcohol intake, years in school, hypocholesterolemia, and/or cholesterol treatment, total serum cholesterol, diabetes mellitus, myocardial infarction (time-varying covariate), and heart failure (time-varying covariate).

Conclusions
Moderate consumption of marine n-3 PUFA close to the median intake in this cohort was associated with a significantly lower risk of incident AF compared to both lower and higher levels of intake.