Estimation of Stator winding faults in induction motors using an adaptive observer scheme
Kallesøe, C. S.; Vadstrup, P.; Rasmussen, Henrik; Izadi-Zamanabadi, Roozbeh

Publication date:
2004

Document Version
Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Estimation of Stator Winding Faults in Induction
Motors Using an Adaptive Observer Scheme

Carsten Skovmose Kallesøe and Pierre Vadstrup
Grundfos Management A/S
Poul Due Jensens Vej 7
DK-8850 Bjerringbro
Denmark
Email: {ckallesoe,pvadstrup}@grundfos.com

Henrik Rasmussen and Roozbeh Izadi-Zamanabadi
Department of Control Engineering, Aalborg University
Fredriks Bajers Vej 7
DK-9200 Aalborg Ø
Denmark
Email: {hr,riz}@control.auc.dk

Abstract—This paper addresses the subject of inter-turn short
circuit estimation in the stator of an induction motor. In the paper
an adaptive observer scheme is proposed. The proposed observer
is capable of simultaneously estimating the speed of the motor,
the amount turns involved in the short circuit and an expression
of the current in the short circuit. Moreover the states of the
motor are estimated, meaning that the magnetizing currents are
made available even though a fault has happened in the motor.
To be able to develop this observer, a model particular suitable
for the chosen observer design, is also derived. The efficiency of
the proposed observer is demonstrated by tests performed on a
test setup with a customized designed induction motor. With this
motor it is possible to simulate inter-turn short circuit faults.

I. INTRODUCTION

Stator faults are according to [1] the most common electrical
defaults in electrical motors. Moreover according to [2] most of
these faults start as an inter-turn short circuit in one of the
stator coils. The increased heat due to this short circuit will
eventually cause turn to turn and turn to ground faults and
finally lead to a break down of the stator.

The inter-turn short circuits are caused by several different
influences on the stator. For example mechanical stress during
assembling or during operation can create scratches in the
insulation and cause short circuits. Especially if the motor is
placed in a moist environment. Moisture can cause flow of
current from scratch to scratch, which can make a hot spot
and thereby destroy the insulation. Partial discharges due to
very high alternating voltage between turns, when the stator is
supplied by a PWM voltage source, can also over time degrade
the insulation and cause a short circuit.

In the literature different approaches are proposed for de-
tection of inter-turn faults. In [3] the stator currents are trans-
formed using the Park transformation. Second order harmonics
in the length of the transformed current vector is then used
for fault detection. In [4] oscillations in the voltage between
the line neutral and the star point of the motor is used as a
fault indicator. This is also shown in [5] using a model of a
faulty motor. In [6] estimation of the negative impedance of
the motor is used as a fault indicator, and in [7] the negative
sequence current is used for the same purpose. In [8] high
frequency voltage injection in the supply voltage is utilized to
create a response on the motor current. This response contains
information of the inter-turn short circuit fault.

In this paper a model-based approach is proposed. The
proposed approach is based on a model of the induction motor
including an inter-turn fault in the stator. Different approaches
for modeling inter-turn short circuits in the stator windings are
found in the literature. In [9] a higher order model is used.
This model is an extension of the model presented in [10].
This type of model is used for simulating higher order effects
in the motor, but the obtained model is of high order. The
inter-turn short circuit fault has it main harmonics in the lower
frequency range. Therefore observers designed on the basis
of this model will be of unnecessary high order for this kind of
fault.

In [11] a steady state model of both inter-turn and turn-turn
faults in an induction motor is developed using a low order
model. In [5] a transient model of the same order as the one
presented in [11] is developed. This model is similar to the
one used in the observer design presented in this paper.

In this paper an adaptive observer is proposed for estimation
of the inter-turn short circuit fault. Theoretical considerations
on adaptive observers can for example be found in [12], [13].
The proposed observer is capable of simultaneously estimating
the speed of the motor, the amount of turns involved in the
short circuit, and an expression of the current in the short
circuit. The observer is based on a model, developed particular
for this purpose. This model is similar to the model described
in [5]. As the proposed observer estimates the impact of the
inter-turn short circuit on the induction motor, it can be used
for fault robust control of the motor. Thereby it is possible to
obtain control in the case of a inter-turn short circuit, meaning
that it is possible to control the process, driven by the motor,
to a fail-safe mode.

As a model based approach for fault estimation is proposed
in this paper, the paper starts by deriving a model of the
induction motor with an inter-turn short circuit in section III.
This model is in section IV used in the design of the proposed
adaptive observer. In section V test results from tests on a
customized designed motor are presented. Finally concluding
remarks ends the paper.
II. NOMENCLATURE

In this paper large bold letters denote matrices. Small bold letters denote matrices in the motor model when described in abc-coordinates and vectors respectively. The parameters in the model presented in section III is described in the following.

\(\mathbf{v}_{sabc} \) The terminal voltage of three phase induction motor, \(\mathbf{v}_{sabc} = (v_{sa} \ v_{sb} \ v_{sc})^T \).

\(\mathbf{i}_{sabc} \) The current at the terminals of the three phase induction motor, \(\mathbf{i}_{sabc} = (i_{sa} \ i_{sb} \ i_{sc})^T \).

\(\psi_{sabc} \) The flux linkage in the stator phases of the induction motor, \(\psi_{sabc} = (\psi_{sa} \ \psi_{sb} \ \psi_{sc})^T \).

\(\mathbf{i}_{rabc} \) The current in the three equivalent phases of the rotor circuit in the induction motor, \(\mathbf{i}_{rabc} = \left[i_{ra} \ i_{rb} \ i_{rc}\right]^T \).

\(\psi_{rabc} \) The flux linkage in the three equivalent phases of the rotor circuit in the induction motor, \(\psi_{rabc} = (\psi_{ra} \ \psi_{rb} \ \psi_{rc})^T \).

\(i_f \) The current in the short circuits of the stator.

\(\mathbf{x}_{sdq0} \) The transformed stator variable vectors of the induction motor, e.i. \(\mathbf{x}_{sdq0} = \mathbf{T}_{dq0}\mathbf{x}_{sabc} \), where \(\mathbf{x}_{sdq0} = (x_{sd} \ x_{sq} \ x_{so})^T \).

\(\mathbf{T}_{dq0} \) A transformation matrix given by \(\mathbf{T}_{dq0} = \left[\begin{array}{ccc} \cos(\theta) & \cos(\theta+\frac{\pi}{6}) & \cos(\theta+\frac{\pi}{3}) \\ \frac{1}{2} \sin(\theta) & \frac{1}{2} \sin(\theta+\frac{\pi}{6}) & \frac{1}{2} \sin(\theta+\frac{\pi}{3}) \end{array}\right] \).

\(\mathbf{T}_{dq0}(\theta) \) A transformation matrix given by \(\mathbf{T}_{dq0} = \mathbf{T}_{dq0}(0) \).

III. MATHEMATICAL MODEL OF SHORT CIRCUITS IN THE STATOR OF AN INDUCTION MOTOR

An inter-turn short circuit denotes a short circuit between two windings in the same phase of the stator, see Fig. 1. Here the electrical circuit of an Y-connected stator is shown.

In the following, a model of an induction motor, including an inter-turn short circuit in phase \(a \), is developed. The model is developed under the assumption that the short circuit does not affect the overall angular position of the coil in the motor.

A. The Induction Motor Model in abc-Coordinates

Setting up the mesh equations for the circuit in figure 1 and rearranging these equations, a model describing a motor with one short circuit in phase \(a \) is found. Using the matrix notation presented in [14] this model is given by the following set of equations,

\[
\mathbf{v}_{sabc} = \mathbf{r}_a (\mathbf{i}_{sabc} - \gamma_i f) + \frac{d\mathbf{\psi}_{sabc}}{dt} + \mathbf{1} v_0 \quad (1) \\
0 = \mathbf{r}_i \mathbf{i}_{rabc} + \frac{d\mathbf{\psi}_{rabc}}{dt} \quad (2) \\
\mathbf{\psi}_{sabc} = \mathbf{l}_s (\mathbf{i}_{sabc} - \gamma_i f) + \mathbf{1}_m (\theta) \mathbf{i}_{rabc} \quad (3) \\
\mathbf{\psi}_{rabc} = \mathbf{l}_s \mathbf{i}_{rabc} + \mathbf{l}_m (\theta) (\mathbf{i}_{sabc} - \gamma_i f) \quad (4) \\
l_f \frac{df}{dt} = -\gamma_i f + \gamma_i^2 \mathbf{v}_{sabc} \quad (5)
\]

where (1) and (3) describe the currents and the flux linkages in each stator phase and (2) and (4) describe the currents and the flux linkages in each rotor phase. Finally (5) describes the current in the short circuit. In (1) \(\mathbf{v}_{sabc} \) is the terminal voltage and \(v_0 \) is the star point voltage. The matrices \(\mathbf{r}_a, \mathbf{r}_r, \mathbf{l}_s \) and \(\mathbf{l}_r \) are defined by,

\[
\mathbf{r}_a = r_a \mathbf{I} \hspace{1cm} \mathbf{r}_r = r_r \mathbf{I} \\
\mathbf{l}_s = l_s \mathbf{I} + \mathbf{l}_m(0) \hspace{1cm} \mathbf{l}_r = l_{ir} \mathbf{I} + \mathbf{l}_m(0)
\]

where \(r_s \) and \(l_s \) are the resistance and the leakage inductance in the stator windings respectively, and \(r_r \) and \(l_{ir} \) are the resistance and leakage inductance in the rotor windings respectively. \(\mathbf{I} \) is the identity matrix and finally \(\mathbf{l}_m \) is the mutual inductance and is given by,

\[
\mathbf{l}_m (\theta) = l_m \left[\begin{array}{ccc} \cos(\theta) & \cos(\theta + \frac{\pi}{3}) & \cos(\theta + \frac{\pi}{2}) \\ \cos(\theta + \frac{\pi}{6}) & \cos(\theta) & \cos(\theta + \frac{\pi}{2}) \\ \cos(\theta + \frac{\pi}{3}) & \cos(\theta + \frac{\pi}{2}) & \cos(\theta) \end{array}\right] \quad (6)
\]

where \(l_m \) is a constant and \(\theta \) is the angle between the stator and rotor phases.

The vector \(\gamma \) in (1) to (5) represents the position and the amount of turns in the short circuit. The vector is, in the case of a short circuit in phase \(a \), given by,

\[
\gamma = \left[\begin{array}{c} \gamma_a \\ 0 \\ 0 \end{array}\right]^T
\]

where \(\gamma_a \) is the amount of turns involved in the short circuit. The inductor and the resister in (5) are given by,

\[
l_f = \gamma_a (1 - \gamma_a) l_s \\
r_f = \gamma_a (1 - \gamma_a) r_s + r_i
\]

where \(r_s \) is the stator resistance, \(l_s \) is the leakage inductance of the stator and \(r_i \) is the resistance in the insulation break. \(r_i = \infty \) means that no short circuit has occurred and \(r_i \neq \infty \) means that some leakage current is flowing. The evolution from \(r_i = \infty \) to \(r_i = 0 \) is very fast in most insulating materials, meaning the value \(r_i \) can be assumed to either equal \(\infty \) or 0.
B. Transformation to a Stator fixed dq0-frame

Using the dq0-transformation T_{dq0} presented in [14], the model described in section III-A is transformed into dq0-coordinates fixed to the stator. Doing this the following model is obtained,

$$v_{sdq} = R_s(i_{sdq} - T_{dq0} \gamma i_f) + \frac{dq}{dt} v_{sdq} + v_0$$ \hspace{1cm} (7)

$$0 = R_r i_{rdq} + \frac{dq}{dt} v_{rdq} - z_p \omega_r J \psi_{rdq}$$ \hspace{1cm} (8)

$$\psi_{sdq} = L_s(i_{sdq} - T_{dq0} \gamma i_f) + L_m i_{ldq}$$ \hspace{1cm} (9)

$$\psi_{rdq} = L_r i_{rdq} + L_m (i_{sdq} - T_{dq0} \gamma i_f)$$ \hspace{1cm} (10)

$$l_f \frac{di_f}{dt} = -r_f i_f + \gamma^T T_{dq0}(v_{sdq} - v_0)$$ \hspace{1cm} (11)

where v_{sdq} is the terminal voltage and $v_0 = [0 \ 0 \ v_0]^T$. Using the dq0-transformation all matrices in the model have a diagonal structure i.e. they are given by,

$$R_s = \text{diag}\{r_s, r_s, r_s\} \hspace{1cm} R_r = \text{diag}\{r_r, r_r, r_r\} \hspace{1cm} L_s = \text{diag}\{(\frac{3}{2} l_m + l_s, \frac{3}{2} l_m + l_s, l_s\} \hspace{1cm} L_r = \text{diag}\{(\frac{3}{2} l_m + l_r, \frac{3}{2} l_m + l_r, l_r\} \hspace{1cm} L_m = \text{diag}\{(\frac{3}{2} l_m, \frac{3}{2} l_m, 0\}

J = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}

From (7) to (11) it is seen that it is convenient to define a new current vector $i_{sdq}' = i_{sdq} - T_{dq0} \gamma i_f$. This current equals the amount of the stator current, which generates air gap flux. Rewriting (7) and (9) and introducing the current i_{sdq}' the stator model becomes,

$$v_{sdq} = R_s i_{sdq}' + L_s \frac{di_{sdq}'}{dt} + L_m \frac{di_{ldq}}{dt} + v_0$$

$$v_{s0} = r_s i_{s0}' + l_s \frac{di_{s0}'}{dt} + v_0$$

$$i_{sdq} = i_{sdq}' + T_{dq0} \gamma i_f$$

$$0 = i_{s0}' + \frac{1}{3} \gamma \alpha i_f$$ \hspace{1cm} (13)

Here the two equations are divided into four equations, where vectors with subscript dq and variables with subscript 0 contains respectively the two first components and the last component of vectors with subscript dq0.

In (7) and (9) the current i_{sdq} is the current in the terminals of the motor. Therefore the current i_{s0} is 0 in the case of a Y-connected stator. This is utilized to obtain (13).

The last row of the voltage $v_{sdq} - v_0$ in (11) equals $v_{s0} - v_0$ and is unknown because the star point voltage v_0 is assumed unknown. From (11) it is seen that the current in the short circuit depends upon this voltage. Therefore it is necessary to find an expression for it. Equation (12), describing the zero current in the stator, can be used for this. Including the expression of the voltage $v_{s0} - v_0$ obtained from (12) in (11) and using (13) to describe i_{s0}' the following expression is obtained,

$$L_f \frac{di_f}{dt} = -r_f i_f + \gamma \alpha v_{sd}$$ \hspace{1cm} (14)

where L_f and R_f respectively are given by,

$$L_f = l_f + \frac{1}{3} \gamma^2 a l_s \hspace{1cm} R_f = r_f + \frac{1}{3} \gamma^2 r_s$$

Equation (8) and (10) describes the rotor circuit. Rewriting these expressions and using that $i_{sdq}' = i_{sdq} - T_{dq0} \gamma i_f$, the model of the rotor circuit becomes,

$$\frac{dq}{dt} \psi_{rdq} = -(R_r L_r^{-1} - z_p \omega_r J) \psi_{rdq} + R_r L_r^{-1} L_m i_{mdq}$$ \hspace{1cm} (15)

$$\frac{dq}{dt} \psi_{rdq} = -r_r \psi_{rdq}$$ \hspace{1cm} (16)

Equation (16) shows that $lim_{t \rightarrow \infty} \psi_{rdq} = 0$ despite of a short circuit in the stator. Moreover ψ_{rdq} does not appear in the remaining model equations, i.e. it is not necessary to include (16) in the final model.

The final model describing the electrical part of the induction motor is given by (12), (15) and (14). These equations respectively describe the stator circuit, the rotor circuit, and the short circuit. Defining the magnetizing current i_{mdq} such that it fulfills the equation $\psi_{mdq} = L_m i_{mdq}$ the model of the induction motor with a short circuit in the stator becomes,

$$L_s \frac{di_{sdq}'}{dt} = -(R_s + R_r) i_{sdq}' + (R_r' - z_p \omega_r J L_m) i_{mdq}$$

where the current measurable at the terminals of the motor is given by $i_{sdq} = i_{sdq}' + T_{dq0} \gamma i_f$. In these equations the matrices R_r', L_r' and L_m' are given by,

$$R_r' = L_m L_r^{-1} R_r L_m$$

$$L_r' = L_s - L_m L_r^{-1} L_m$$

meaning that the new matrices retain the diagonal structure.

IV. AN ADAPTIVE OBSERVER FOR INTER-TURN FAULT DETECTION

In the previous section a model of an induction motor with an inter-turn short circuit is developed. This model will in this section be used in the development of an adaptive observer. This observer is based on only the electrical quantities available at the terminals of the motor.

The model developed in the previous section can be put on matrix form resulting in the following description,

$$x = (A_0 + \omega_r A_{\omega r}) x + B \nu$$

$$y = C x$$

where,

$$x = \begin{bmatrix} i_{sdq}' \\ i_{mdq}' \\ i_f \end{bmatrix}$$

$$u = v_{sdq}$$

$$y = i_{sdq}$$

The matrices in this model are given by,

$$A_0 = \begin{bmatrix} -L_s^{-1} (R_s + R_r') & L_m^{-1} R_r' & 0 \\ 0 & -L_m^{-1} R_r' & -R_f \end{bmatrix}$$
\[A_{\omega r} = \begin{bmatrix} 0 & -z_p JL_s^{-1} L_m' & 0 \\ 0 & z_p J & 0 \\ 0 & 0 & 0 \end{bmatrix} \]
\[B = \begin{bmatrix} L_s'^{-1} \\ 0 \\ \frac{2}{3l_s'} \end{bmatrix} \]
\[C = [I \ 0 \ T_{dq}] \]

All parameters of the matrices are known except for the vector \(\gamma\) and the parameters \(R_f\) and \(L_f\). The last two appear in the matrices in a fraction, which can be rewritten as shown below,

\[\frac{R_f}{L_f} = \frac{1}{l_f} + \frac{\gamma_a^2 r_s}{\gamma_a (1 - \frac{2}{3} \gamma_a r_s + r_i)} \]

If it is assumed that \(r_i = 0\) this fraction equals \(\frac{\gamma_a}{2 \gamma_a}\), meaning that the fraction is known. \(r_i\) is the resistance of the insulation in the short circuit. In section III-A it is argued that this resistance almost always is either \(\infty\) or 0. Therefore the assumption that \(r_i = 0\) is almost always true if a short circuit has occurred.

Defining a linear state transformation \(x = Tz\) as shown below,

\[T = \begin{bmatrix} I & 0 & \begin{bmatrix} -1 & 0 \end{bmatrix} \\ -L_s'^{-1} L_s & I & 0 \\ 0 & 0 & \frac{1}{2 \gamma_a} \end{bmatrix} \] (19)

and defining a fault signal \(f\) as

\[f = \frac{\gamma_a}{1 - \frac{2}{3} \gamma_a} \] (20)

the system described by (17) is transformed into a bilinear system on the form,

\[\dot{z} = (A_0 + \omega_r A_{\omega r} + v_{sd} A_{v_{sd}})z + Bu \]
\[y = Cz \] (21)

where the state vector is extended with a state describing the fault signal, e.i. \(z = [(T^{-1}x)^T \ f]^T\). The matrices in (21) are given by,

\[A_0 = \begin{bmatrix} A_{0,11} & L_s'^{-1} R_r' & \begin{bmatrix} \frac{R_s + R_r'}{L_s'} - \frac{r_s}{L_s'} & 0 \\ 0 & L_m'^{-1} R_s & \begin{bmatrix} \frac{R_s}{L_m'} - \frac{r_s}{L_m'} & 0 \\ 0 & 0 & \frac{2}{3l_s'} \end{bmatrix} \end{bmatrix} \end{bmatrix} \]
\[A_{\omega r} = \begin{bmatrix} z_p J & -z_p JL_s'^{-1} L_m' & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \]

\[C = [I \ 0 \ 0] \]

where \(A_{0,11} = -L_s'^{-1}(R_s + R_r') - L_m'^{-1} R_s'\) in matrix \(A_0\).

If the speed is assumed constant, this system is a bilinear system with one unknown but constant parameter, namely the speed. For such a system an adaptive observer can be used for simultaneous estimation of the states and the unknown parameter. This is possible if the system fulfills some demands presented in definition 1 below.

In [12] a definition of a system on nonlinear adaptive form is given. The corresponding definition for the bilinear case is presented below.

Definition 1 A system on the form

\[\dot{z} = A(u, \theta)z + Bu \] (22)

where \(z = [y \ \zeta]^T\) and \(y\) is the measured output, is said to be on bilinear adaptive form if,

- \(A(u, \theta)\) is bounded for all \(\theta \in D_\theta\) and \(u \in U\), where \(D_\theta\) is the parameter space and \(u \in U\) is the input space.
- the set \((A(u, \theta), C)\) is observable for every \(\theta \in D_\theta\) and \(u \in U\), where \(C = [I \ 0]\).
- \(A_{\theta_1}(u)\) to \(A_{\theta_n}(u)\) are linear independent matrices for every \(u \in U\).

where,

\[A(\theta) = A_0(u) + \theta_1 \begin{bmatrix} A_{\theta_1}(u) \\ 0 \end{bmatrix} + \cdots + \theta_n \begin{bmatrix} A_{\theta_n}(u) \\ 0 \end{bmatrix} \]

Remark 1 Definition 3.1 in [12] requires existence of a Lyapunov function and Lipschitz conditions on the nonlinearities. These are fulfilled in this case as the system is state affine.

The system described by (21) fulfills definition 1 except for the observability condition when \(v_{sd} = 0\). It can be argued that when the induction motor is running, the fraction of the time where \(v_{sd} = 0\) is almost equal to zero. Therefore the system described by (21) is observable almost all the time and therefore fulfills definition 1 almost all the time.

For a system on the form defined by definition 1 an adaptive observer exists according to the following lemma.

Lemma 1 For a system of the form defined in definition 1 an adaptive observer exists and has the following form,

\[\dot{\hat{z}} = A(u, \hat{\theta})\hat{z} + Bu + K(y - \hat{y}) \] (23)
\[\dot{\hat{\theta}} = \kappa (y - \hat{y})^T P_1 A_{\theta_i}(u) \hat{z} \quad \forall \ i \in \{1, \cdots, n\} \] (24)
Remark 2 In the text above it is argued that the observer is stable for all values of the voltage v_{sd} between -400 and 400 [V] except for $v_{sd} = 0$, and all speeds between -400 and 400 [rad/sec]. This is not the same as saying that it is possible to estimate the fault and speed at zero speed due to demands for persistence of excitation.

Remark 3 Fault tolerant control can be obtained using the current vector \dot{v}_{sdq} estimated by the proposed observer, as input to the current controllers. This current is the part of the stator current producing air gap flux. Therefore, by using this current the control is not affected by the short circuit.

Remark 4 According to [16] isolation between different faults can be obtained using a set of adaptive observers. This idea can, in the case of the induction motor, be used if three identical observers are designed, each detecting a stator winding fault in one of the three phases.

V. Test Results

In this section the adaptive observer is tested on an induction motor setup where inter-turn stator faults can be simulated. The electrical circuit of the stator is shown in Fig. 3. The motor used in the test is a 1.5 [KW] customized Grundfos motor, supplied by a Danfoss frequency converter. The speed, the three phase currents, and the three phase voltages are available at the test setup. The voltage to the motor is controlled using a linear voltage to frequency relation, with a voltage boost at low frequencies. All tests are preformed at supply frequencies between 10 and 30 [Hz] to avoid too large short circuit currents and thereby burnout of the motor during the tests.

Three tests are performed, showing the estimation capability of the algorithm under three different conditions. In each of the tests the algorithm is tested with no short circuit, 5% of the windings short circuited, and 25% of the windings short circuited. In the first test the motor is running at constant speed with a supply frequency of 25 [Hz]. The results from this test are shown in Fig. 4(a) and 4(b). In the second test the supply frequency of the motor is changed each second between 15 and 30 [Hz]. The results from this test are shown in Fig. 4(c)

Fig. 2. Root locus plot of the observer eigenvalues for four different supply voltages v_{sd} and speed values from -400 to 400 [rad/sec].

From Fig. 2 it is seen that in the presented cases the system is stable. Numerical analysis has shown that this is the case for all values of v_{sd} from -400 [V] to 400 [V] except for $v_{sd} = 0$.

Fig. 3. The electrical circuit of the stator in the test setup. Two points of phase a of the stator and the star point are available at the terminal box.
Fig. 4. The results form tests with the proposed algorithm. Figure 4(a) and 4(b) show results at constant speed and balanced supply voltage, figure 4(c) and 4(d) shows results with changing speed, and figure 4(e) and 4(f) shows results with unbalanced supply voltage.
and 4(d). In the last test the amplitude of voltage supplying phase α is decreased with 5%, meaning that the supply voltage is unbalanced. The results from this test are shown in Fig. 4(e) and 4(f).

All the tests have shown that the observer is stable. From the first test, presented in Fig. 4(a) and 4(b), it is seen that the speed is estimated without any bias. It is also seen that there is a bias on the estimated fraction of turns in the short circuit. This bias is partly due to noise on the measurements, and partly due to mismatch between the real motor parameters and the motor parameters used in the observer. This bias is repeated in each of the three tests.

Results from the second test, presented in 4(c) and 4(d), shows that the observer is capable of estimating the wanted performance of the observer. It is, however, still possible to use the estimated motor parameters used in the observer. This bias is partly due to noise on the measurements, and partly due to mismatch between the real motor parameters and the motor parameters used in the observer. This bias is repeated in each of the three tests.

From the results of the last test, presented in 4(e) and 4(f), it is seen that an unbalanced supply of 5% is not affecting the performance of the observer.

VI. CONCLUSION

An adaptive observer for simultaneous estimation of the motor states, the speed, and the amount of turns in an inter-turn short circuit is proposed. The observer is tested on a customized designed induction motor. The tests have shown that the observer can estimate an inter-turn fault despite of speed changes and unbalanced supply conditions. This makes the estimation scheme usable in inverter feed induction motor drives, or in motor applications supplied by a bad grid.

As both the short circuit and the states of the motor are estimated, the proposed observer might be used for fault tolerant control. Meaning that torque control can be obtained despite of an inter-turn short circuit in the stator.

REFERENCES

APPENDIX I

PROOF OF LEMMA 1

This appendix contains the proof of lemma 1. The proof is quite simple and is based on a Lyapunov analysis of the error equation of the observer. The error equation of the adaptive observer is given by,

\[
\dot{\tilde{z}} = A(\theta, u)\tilde{z} + Bu - \left(A(\tilde{\theta}, u)\tilde{z} + Bu + K(u)(y - \tilde{y}) \right) = (A(\theta, u) - K(u)C)\tilde{z} + A_0(\tilde{\theta}, u)\tilde{z}
\]

where \(\tilde{z} = z - \tilde{z}, \tilde{\theta} = \theta - \hat{\theta} \) and,

\[
A_0(\tilde{\theta}, u) = \sum_{i=1}^{n} \tilde{j}_i \left[A\kappa_i (u) \right] C = [I \ 0]
\]

The Lyapunov function presented below is used for the stability analysis of the error equation,

\[
V = \tilde{z}^T P \tilde{z} + \frac{1}{2\kappa} \sum_i \tilde{\theta}_i^2 > 0
\]

where \(P \) is a positive definite matrix of the following form,

\[
P = \begin{bmatrix} P_1 & 0 \\ 0 & P_2 \end{bmatrix}
\]

The derivative of this Lyapunov function along the trajectory of the error system presented in equation 26 is given by,

\[
\dot{V} = \tilde{z}^T ((A(\theta, u) - K(u)C)^T P + P(A(\tilde{\theta}, u) - K(u)C)) \tilde{z} + \sum_i \tilde{\theta}_i \left(\tilde{z}^T P A_0 (\kappa_i u) \right) \tilde{z} + \frac{1}{\kappa} \tilde{\theta}_i^2
\]
The adaptation law is given by setting the terms inside the sum equal to zero and using the assumption the θ is constant meaning that $\dot{\hat{\theta}} = -\dot{\hat{\theta}}$. From this the following adaptation law is obtained,

$$\dot{\hat{\theta}}_i = \kappa (y - \hat{y})^T P_1 A_{\theta_i}(u) \hat{z} \quad \forall i \in \{1, \ldots, n\}$$

where $z = [y \ \zeta]$ from definition 1 is used to interchange \hat{z} and $y - \hat{y}$. Using the adaptation law, the derivative of the Lyapunov function along the trajectory of the error equation reduces to,

$$\dot{V} = \hat{z}^T ((A(\theta, u) - K(u)C)^T P + P(A(\theta, u) - K(u)C)) \hat{z}$$

which is smaller than zero when $\hat{z} \neq 0$ if,

$$\Re\{\text{eig}(A(\theta, u) - K(u)C)\} < 0 \quad \forall \theta \in D_\theta, u \in U$$

where D_θ and U are a bounded sets. or in other words the matrix $A(\theta, u) - K(u)C$ is Hurwitz for all $\theta \in D_\theta$ and for all $u \in U$.