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Hybrid Control Design for a Wheeled Mobile
Robot

Thomas Bak1, Jan Bendtsen1, and Anders P. Ravn2

1 Department of Control Engineering, Aalborg University, Fredrik Bajers Vej 7C,
DK-9220 Aalborg, Denmark, {tb,dimon}@control.auc.dk

2 Department of Computer Science, Aalborg University, Fredrik Bajers Vej 7E,
DK-9220 Aalborg, Denmark, apr@cs.auc.dk

Abstract. We present a hybrid systems solution to the problem of tra-
jectory tracking for a four-wheel steered four-wheel driven mobile robot.
The robot is modelled as a non-holonomic dynamic system subject to
pure rolling, no-slip constraints. Under normal driving conditions, a non-
linear trajectory tracking feedback control law based on dynamic feed-
back linearization is su�cient to stabilize the system and ensure asymp-
totically stable tracking. Transitions to other modes are derived system-
atically from this model, whenever the con�guration space of the con-
trolled system has some fundamental singular points. The stability of the
hybrid control scheme is �nally analyzed using Lyapunov-like arguments.

1 Introduction
Wheeled mobile robots is an active research area with promising new applica-
tion domains. Mobile robots are mechanical systems characterized by challenging
(nonintegrable) constraints on the velocities which have led to numerous inter-
esting path tracking control solutions, see [16], [13], [4], and the recent survey of
non-holonomic control problems in [11]. Recently, [3] and [1] have addressed the
robot path tracking problem from a hybrid systems perspective. In this paper,
we consider a problem of similar complexity and develop a systematic approach
to derivation of a hybrid automaton and to stability analysis.

Our work is motivated by a project currently in progress, where an au-
tonomous four-wheel driven, four-wheel steered robot (Figure 1) is being de-
veloped. The project needs a robot that is able to survey an agricultural �eld
autonomously. The vehicle has to navigate to certain waypoints where measure-
ments of the crop and weed density are obtained. This information is processed
and combined into a digital map of the �eld, which will eventually allow the farm
manager to deal with weed infestations in a spatially precise manner. The robot
is equipped with GPS, gyros, magnetometer and odometers, which will not only
help in the exact determination of the location where each image is taken, but
also provide measurements for an estimate of the robot's position and orienta-
tion for a tracking algorithm. Actuation is achieved using independent steering
and drive on four wheel assemblies (8 brushless DC motors in total). The robot
navigates from waypoint to waypoint following spline-type trajectories between



Fig. 1. Schematic model of the experimental platform. The robot is equipped with 8
independent steering and drive motors. Localization is based on fusion of GPS, gyro,
magnetometer, and odometer data.

the waypoints to minimize damage to the crop. From a control point of view,
this is a tracking problem. To solve this problem a dynamical model of the vehi-
cle subject to pure rolling, no-slip constraints has been developed, following the
approach taken in [5] and [6]. Based on this nonlinear model, we design a path
tracking control law based on feedback linearization.

Feedback linearization designs have the potential of reaching a low degree
of conservativeness, since they rely on explicit cancelling of nonlinearities. How-
ever, such designs can also be quite sensitive to noise, modelling errors, actuator
saturation, etc. As pointed out in [8], uncertainties can cause instability under
normal driving conditions. This instability is caused by loss of invertibility of
the mapping representing the nonlinearities in the model. Furthermore, there
are certain wheel and vehicle velocity con�gurations that lead to similar losses
of invertibility. Since these phenomena are, in fact, linked to the chosen control
strategy rather than the mechanics of the robot itself, we propose in this paper
to switch between control strategies such that the aforementioned stability issues
can be avoided. This idea is also treated in [15], where singularities in the feed-
back linearization control law of a ball-and-beam system is treated by switching
to an approximate control scheme in the vicinity of the singular points in state
space.

In this paper, we intend to motivate the rules for when and how to change be-
tween the individual control strategies directly from the mathematical-physical
model. We will consider the conditions under which the description may break
down during each step in the derivation of the model and control laws. These
conditions will then de�ne transitions in a hybrid automaton that will be used
as a control supervisor.

However, introducing a hybrid control scheme in order to improve the op-
erating range where the robot can operate in a stable manner comes at a cost:



The arguments for stability become more complex. Not only must each individ-
ual control scheme be stable; they must also be stable under transitions (refer
to e.g., [12] and the references therein for further information on stability theory
for switched systems). A straightforward analysis will show that the system can
always be rendered unstable: Just vary the reference input such that transitions
are always taken before the transition safe state. We therefore intend to apply
the generalized Lyapunov stability theory as introduced by Branicky in [2] to
add a second automaton that can constrain the change of the reference input
(the trajectory) such that the resulting system remains stable.

We abstract the Lyapunov functions to constant rate functions, where the
rates are equivalent to the convergence rate. Each mode or state of the original
automaton is then replaced by three consecutive states. The �rst of these states
models the initial transition cost and settling period where the function may
increase, albeit for a bounded time, while the second and third state models the
working mode with the local Lyapunov function. The third state is the transition
safe state, where the Lyapunov function has decreased below its entry value. All
three states are guarded by the original conditions for a mode change; but it is
potentially unsafe to leave before the third state is entered.

This automaton thus de�nes safe operating conditions, or put another way:
Constraints to be satis�ed by the trajectory planner. The composed automaton
is in a form where model checking tools can be employed for the analysis. The
robot thereby has a tool for determining online whether or not a given candidate
trajectory is safe from a stability point of view.

2 Dynamic Model and Linearization

In the following we derive the model and the normal mode control scheme.
During the derivation we note conditions for mode changes.

We consider a four-wheel driven, four-wheel steered robot moving on a hor-
izontal plane, constructed from a rigid frame with four identical wheels. Each
wheel can turn freely around its horizontal and vertical axis. The contact points
between each of the wheels and the ground must satisfy pure rolling and non-slip
conditions.3

Consider a reference (`�eld') coordinate system (XF , YF ) in the plane of mo-
tion as illustrated in Figure 2. The robot position is then completely described
by the coordinates (X,Y ) of a reference point within the robot frame, which
without loss of generality can be chosen as the center of mass, and the orienta-
tion θ relative to the �eld coordinate system of a (`vehicle') coordinate system
(Xv, Yv) �xed to the robot frame. These coordinates are collected in the posture
vector ξ = [X Y θ]T ∈ R2 × S1.
3 The pure rolling and non-slip conditions can obviously not be satis�ed in the real-life
application, where the robot drives in a muddy �eld. They are primarily employed
here in order to enable us to derive control laws that minimize the amount of slip
and the degree by which the wheels `work against each other.'
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Fig. 2. De�nition of the �eld coordinate system (XF , YF ), vehicle coordinate system
(Xv, Yv), vehicle orientation θ, distance `1, and direction γ1 from the center of mass
(X, Y ) to wheel 1. Each wheel plane is perpendicular to the Instantaneous Center of
Rotation (ICR).

The position of the i'th wheel (1 ≤ i ≤ 4) in the vehicle coordinate system
is characterized by the angle γi and the distance `i. As the wheels are not
allowed to slip, the planes of each of the wheels must at all times be tangential
to concentric circles with the center in the Instantaneous Center of Rotation
(ICR). The orientation of the plane of the i'th wheel relative to Xv is denoted
βi. The vector β = [β1 β2 β3 β4]T ∈ S4 de�ne the wheel orientations.

From an operational point of view a relevant speci�cation of the ICR is to
give the orientation of two of the four wheels. We therefore partition β into
βc ∈ S2 containing the coordinates used to control the ICR location and βo ∈ S2

containing the two remaining coordinates that may be derived from the �rst.

Cross Driving (Singular Wheel Con�guration) An important ambiguity
(or singular wheel con�guration), is present in the approach taken above. For
β1 = ±π/2 and β2 = ±π/2 the con�guration of wheels 3 and 4 is not de�ned.
The situation corresponds to the ICR being located on the line through wheel 1
and 2. The wheel con�guration βc = [β3 β4]T result in similar problems and both
con�gurations fail during cross driving as all wheels are at ±π/2. To ensure safe
solutions to the trajectory tracking problem we must ensure that the singular
con�gurations are avoided at all times. Based on this discussion we identify three
discrete control modes, q1, q2 and q3:

q1: Trajectory tracking with βc = [β1 β2]T. This mode is conditioned on |β1| <
(π

2 − eβ) ∨ |β2| < (π
2 − eβ).

q2: Trajectory tracking with βc = [β3 β4]T. This mode is conditioned on |β3| <
(π

2 − eβ) ∨ |β4| < (π
2 − eβ).

q3: Cross Driving with β1 = β2 = β3 = β4. This mode is conditioned on (|β1| ≥
(π

2 − eβ) ∨ |β2| ≥ (π
2 − eβ)) ∧ (|β3| ≥ (π

2 − eβ) ∨ |β4| ≥ (π
2 − eβ)).



where eβ is a small positive number. The two �rst modes cover the situations
where the ICR is governed by wheels 1 and 2 and by wheel 3 and 4, respectively.
The last covers the remainder of the con�guration space where ICR is approxi-
mately at in�nity. For brevity of the exposition, we will consider βc = [β1 β2]T

in the following; the case with βc = [β3 β4]T is analogous.
In general, no set of two variables is able to describe all wheel con�gurations

without singularities [14]. The problem of singular con�gurations is hence not
due to the representation used here, but is a general problem for this type of
robotic systems.

2.1 Vehicle Model
Following the argumentation in Appendix A, the robot posture can be manipu-
lated via one velocity input η(t) ∈ R in the instantaneous direction of the wheel
orientation state Σ(βc) ∈ R3, which is constructed to meet the pure-roll con-
straint. Similarly, it is possible to manipulate the orientation of the wheels via
an orientation velocity input ζ(t) = [β̇1 β̇2]T ∈ R2. The no-slip condition on the
wheels that constrain η(t) is handled (see Appendix A) by applying Lagrange
formalism and computed torque techniques. The result is the following extended
dynamical model:

χ̇ =




ξ̇
η̇

β̇c


 =




0 RT(θ)Σ(βc) 0
0 0 0
0 0 0


 χ +




0 0
1 0
0 I




[
ν
ζ

]
(1)

where ν is a new exogenous input that is related to the torque applied to the
drive motors, and RT(θ) is a coordinate rotation matrix. In equation (1) it is
assumed that the β dynamics can be controlled via local servo loops, such that
we can manipulate β̇ as an exogenous input to the model.

2.2 Normal Trajectory Tracking Control
Provided we avoid the singular wheel con�gurations the standard approach from
here on is to transform the states into normal form via an appropriate di�eo-
morphism followed by feedback linearization of the nonlinearities and a standard
linear control design. We choose the new states

x1 = T (χ) =
[
ξref − ξ

ξ̇ref − ξ̇

]
, (2)

which yields the following dynamics:

ẋ1 = A1x1 + B1

(
δ(χ)

[
ν
ζ

]
− α(χ)

)
, A1 =

[
0 I
0 0

]
, B1 =

[
0
I

]
. (3)

Using the results from Appendix A, δ(χ) and α(χ) may be found to

δ(χ) = RT(θ)
[
Σ(βc) N(βc)η

]
(4)



and

α(χ) = sin(β1 − β2)η2



−`1 sin β2 cos(β1 − γ1) + `2 sin β1 cos(β2 − γ2)
`1 cos β2 cos(β1 − γ1)− `2 cos β1 cos(β2 − γ2)

0


 (5)

where N(βc) = [N1 N2] is speci�ed in equations (20) and (21). When we apply
the control law [

ν
ζ

]
= δ(χ)−1(α(χ)−K1x1) (6)

we obtain the closed-loop dynamics ẋ1 = (A1 − B1K1)x1, which tends to 0
as t → ∞ if K1 is chosen such that A1 − B1K1 has eigenvalues with negative
real parts. Similar dynamics can be obtained for the mode with βc = [β3 β4]T,
resulting in closed-loop dynamics ẋ2 = (A2 −B2K2)x2.

2.3 Cross Driving Control

The normal trajectory tracking cannot be applied in the singular wheel con�g-
urations and a speci�c control must hence be derived that is able to control the
vehicle when all wheels are parallel. Fortunately, the dynamics of the robot be-
comes particularly simple in this case. With θ̇ = 0 the dynamics are immediately
linear; hence, choosing the states

x3 = Tχ =
[
ξref − ξ

ξ̇ref − ξ̇

]
, (7)

where T is an appropriate invertible matrix, yields the dynamics

ẋ3 = A3x3 + B3

[
ν
0

]
, A3 =

[
0 I

A31 A32

]
, B3 =

[
0
I

]
(8)

which can be controlled by applying the feedback ν = −K3x3. Note that this
controller does perform any control on the wheel orientation. In order not to
remain in the mode q3 we impose a new condition, based on the error in orien-
tation, |θref − θ| < a, where a is a small positive number.

2.4 Rest Con�gurations

During the feedback linearization design we detect another interesting condition
due to the inversion of δ(χ). If δ(χ) looses rank, the control strategy breaks down
and the control input grows to in�nity. If we avoid the rest con�guration, η = 0,
then Σ(βc) speci�es the current direction of movement and the column vectors
N1 and N2 are perpendicular to this direction and to each other. To avoid an
ill-conditioned δ(χ) we must impose a new condition, |η| ≥ n, where n is a small
positive number, on our trajectory tracking modes.

To complete the construction, we add additional modes to handle the rest
con�guration. First assume that the robot is started with β1 = β2 = β3 = β4. We



may then utilize the controller de�ned for the cross driving (q3) mode, choosing
ξref as an appropriate point on the straight line originating from the center of
mass in the direction de�ned by β along with

ξ̇ref =
[
ηref

ζref

]
=

[
2n
0

]
(9)

This mode (q0) allows the robot to start from rest. Finally we add a mode q4

to handle a stop. Again we assume that the wheels have been oriented by the
control laws in mode q1 or q2 such that the waypoint lies on the straight line
from the center of mass in the direction de�ned by β. We may then apply the
same state transformation as in equation (7) along with the same state feedback,
and choosing ξref as the target waypoint along with ξ̇ref = 0.

3 Hybrid Automaton Supervisor
The trajectory tracking problem for this particular robot may be solved by
applying the di�erent control laws, as outlined above for di�erent modes. The
conditions for exiting the modes have been de�ned as well. For each of these
modes, we de�ned special control schemes, and conditions. Given that there are
two modes where the robot is at rest, and three modes where the robot is driving,
it is straightforward to introduce two super-modes, Rest and Driving. This gives
rise to the hierarchical hybrid automaton implemented using State�ow as shown
in Figure 3.

vehicle_v7/Automaton

Printed 17−Jan−2003 12:59:12

DrivingRest

Q0

Q1

Q2

Q3

Q4

[(b[3]>=B | b[4]>=B) & b[1]<=B & b[2]<=B]

[eta<0.9*E]

[(b[1]>=B | b[2]>=B) & b[3]<=B & b[4]<=B]

[new_wp==1] [b[1]>B & b[2]>B & b[3]>B & b[4]>B]

[b[1]<=B & b[2]<=B  | a>A]

[b[3]<=B & b[4]<=B | a>A]

[b[1]>B & b[2]>B & b[3]>B & b[4]>B]

[eta>=1.5*E]

Here b[i] is βi, B is π
2
− eβ a is |θref − θ|, and A, E, are small positive numbers.

Fig. 3. State�ow representation of Automaton.

The hybrid automaton [10] consists of �ve discrete states,Q = {q0, q1, q2, q3, q4}
as de�ned during the model and controller derivation. The continuous state x



de�ned by equation (2) or (7) belongs to the state space X ⊆ R2×S1×R3. The
corresponding hybrid state space is H = Q×X . The vector �elds are de�ned by

f(q, x) =





(A3 −B3K3)x0 if q = q0,

(A1 −B1K1)x1 if q = q1,

(A2 −B2K2)x2 if q = q2,

(A3 −B3K3)x3 if q = q3,

(A3 −B3K3)x4 if q = q4.

(10)

Conditions and guards are given in Figure 3 based on the derivations in
Section 2. The system including the supervisor was simulated in Simulink and
the tracking of an example trajectory is shown in Figure 4. The system is clearly
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Fig. 4. Tracking a reference trajectory. The vehicle is initially at rest o�set from the
trajectory by 1 meter in the y-direction.

able to start from a rest con�guration, track the trajectory and stop at a rest
con�guration. In this example the controller starts in the mode q4, switches to
a new waypoint and trajectory information becomes available. As η grows the
mode is changed to q3 and eventually q1. As the conditions on steering wheels (βc)
are violated the control switches to mode q2. Finally as the vehicle approaches
the end waypoint the mode returns q4 and stops. As the endpoint is de�ned by
the direction of Σ(βc), and the orientation of the wheels are near parallel (and
without control) the vehicle reaches the �nal waypoint with a small error.

Mode changes, tracking errors and wheel positions are given in Figure 5.

4 Stability Analysis
Stability analysis of the developed controller uses the notion of stability of
switched systems introduced in [2] as summarized in Appendix B. In case of
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Fig. 5. Wheel orientation (βi), tracking errors (position, angle) and the input η for the
case given in Figure 4. The modes are indicated in the top subplot. The transition to
rest is achieved by a step change in the planned trajectory, which result in a disturbance
in the position tracking at approximately 10 sec.

the autonomous robot, we have the following Lyapunov functions for the indi-
vidual control modes.

q0: Starting from rest with β1 = β2 = β3 = β4 : V0(x0) = xT0 P3x0.
q1: Trajectory tracking with βc = [β1 β2]T : V1(x1) = xT1 P1x1

q2: Trajectory tracking with βc = [β3 β4]T : V2(x2) = xT2 P2x2

q3: Cross driving with β1 = β2 = β3 = β4 : V3(x3) = xT3 P3x3

q4: Stopping with β1 = β2 = β3 = β4 : V4(x4) = xT4 P3x4.

In each of the cases listed above, Pj = PT
j > 0 is the positive de�nite solution

to the Lyapunov equation Pj(Aj − BjKj) + (Aj − BjKj)TPj = −I. Note that
for modes q0 and q4, the same state feedback K3 and solution matrix P3 as in
mode q3 are used. Elementary calculations now yield

V̇j = ẋTj Pjxj + xTj Pj ẋj = −xTj xj .

With this in place, we can now attempt to analyze the combination of the
Lyapunov functions using a hybrid automaton. We note that since we focus
on stability only, we can in each mode abstract from the concrete evolution of
the state and replace it by the evolution of the Lyapunov function. For each
discrete state qj , j = 0, . . . , 4 in the automaton in Figure 3 we introduce three
consecutive states q′j,k, k = 0, 1, 2, which evaluate a constant rate variable Λj



that dominates the j'th Lyapunov function. These states are: An entry state
q′j,0, which represents the gain in the Lyapunov function Vj(xj) at the instant the
hybrid control law switches to mode j; an active state q′j,1, which represents the
period where the feedback control [ν ζT]T = −Kjxj is active, and where Vj(xj)
is decreasing toward 0; and a state q′j,2, where Vj(xj) has decreased below the
entry level. The basic idea is depicted in Figure 4. When the control enters mode

-

6
Vj(0) + ∆Vj

Vj(0)
'Time' T

Λj,0(T ) Vj(xj(t))

ª Λj,1(T )

T = 0 T = Tpenalty T = Tstable

- q′0 - q′1 - q′2

Fig. 6. Three-state automaton abstracting the Lyapunov function of mode j. The entry,
active and stabilized states are indicated below the �gure.

j at time tj , the Lyapunov function will have gained an amount ∆Vj since the
last time it was active. This is modelled abstractly as a constant rate function
Λj,0(T ) = T + Vj(tj), 0 ≤ T ≤ Tpenalty, where the 'time' Tpenalty is determined
as ∆Vj = Tpenalty. Here, T is an abstract time used for the evaluation of the
constant rate function that dominates the j'th Lyapunov function, and which
is reset to 0 every time mode qj is entered. At T = Tpenalty, the system enters
the active state, in which V̇j is negative de�nite. Consequently, Vj(xj(t)), tj ≤
t ≤ t + Tstable − Tpenalty is bounded from above by the function Λj,1(T ) =
−αoT + ∆Vj + Vj(0), Tpenalty ≤ T ≤ Tstable, αo ≥ 0, i.e., another constant rate
automaton. Tstable is the time where Λj,1(T ) = Vj(0); at this point the state
changes to q′j,2. In order to complete the construction, we must, for each mode
change, �nd the maximal transition penalty ∆Vj which determines Tpenalty, and
a suitable α0.

In general, the transition penalty is the di�erence between two Lyapunov
functions, at the transition point xj from mode qi to qj . In our case, we note
that the domains of the Lyapunov functions for the driving modes q1, q2, q3 are
identical, cf. equations (2) and (7). Thus the transition penalty is of the form
xTj (Pj−Pi)xj . Here, we can choose to use the minimum of the P -matrices for all
three Lyapunov functions, thus overapproximating the larger ones. This results
in a transition penalty of zero, and we can conclude that the system is stable
irrespective of the transition pattern while driving. For the transitions to stop
mode q4 and from start mode q0, the domains are di�erent, cf. equation (9). In the
stop transition mode, we can safely ignore the term from the driving Lyapunov



function, thus we get a penalty less than xT4 P3x4, where the magnitude of x4

is determined by the di�erence ξref − ξ and the velocity ξ̇. Assuming that the
vehicle is stopped only after it has found the trajectory, the �rst term is close to
zero, and the second term is of the order of n. A similar analysis applies to the
start to drive mode transition.

The slope α0 can be evaluated from the entry value Vj(0) and the growth ∆Vj

of the j'th Lyapunov function as follows. The solution of the linearized system
during the time the j'th controller is active (i.e., the time where the automaton
is in the state q′j,k) can be written as xj(t) = e(Aj−BjKj)txj(tj). Hence, in the
time interval t ∈ [tj ; t + (Tstable − Tpenalty)],

Vj(t) =
(
e(Aj−BjKj)txj(tj)

)T
Pje

(Aj−BjKj)txj(tj)

= ‖P 1
2 e(Aj−BjKj)txj(tj)‖

where ‖ · ‖ denotes the 2-norm of (·). Assuming the pair (Aj , Bj) is controllable,
Kj can be chosen such that it is possible to diagonalize the closed-loop matrix,
i.e., it is possible to �nd an invertible matrix Sj such that (Aj − BjKj) =
SjDjS

−1
j , where D is a diagonal matrix of appropriate dimension containing the

eigenvalues of (Aj −BjKj) in the main diagonal. Thus we have

Vj(t)
1
2 = ‖P

1
2

j e(Aj−BjKj)txj(tj)‖
= ‖P

1
2

j Sje
DjtS−1

j xj(tj)‖
≤ ‖P

1
2

j Sj‖ ‖S−1
j xj(tj)‖ ‖eDjt‖

≤ ‖P
1
2

j Sj‖ ‖S−1
j xj(tj)‖dim(xj)eλmax(Dj)

where P
1
2 is the uniquely determined square matrix satisfying P = P

1
2 P

1
2 . All

the terms in front of the exponential are constants that can be evaluated at time
tj , implying that (Tstable − Tpenalty) and α0 can easily be found once xj(tj) is
known, i.e., at the transition to mode qj . As indicated on Figure 4, using the
upper bound constant rate functions allows for a certain margin to the actual
Lyapunov function, which can be considered a form of `robustness' of the scheme.

When evaluating the stability of the system for a given trajectory, it is clear
that only control transitions from the stabilized state are guaranteed safe. To
check for unsafe transitions due to the input we propose to add a second au-
tomaton constraining the change of the reference input (the trajectory). This
automaton has three states, startup, constant_speed and stop which allows us
to specify the basic operation of the path planning. The trajectory planner tran-
sitions conditions are guarded by the transitions in the automation describing
the Lyapunov function. Mode transitions from the two unsafe states (entry, sta-
bilized) are redirected to an error mode. When a composition with the path
planner has error as an unreachable state � the system is safe. This analysis
may be done o�ine, when trajectories are preplanned, or online, in the case of
dynamic trajectory planning.



In the concrete case, the driving modes are safe throughout, while stop and
start introduce a jump in the error and thus must be separated by some driving
period.

5 Conclusion
We have developed a hybrid control scheme for a path-tracking four-wheel steered
mobile robot, and shown how it can be analyzed for stability.

The basis for controller development is standard non-slipping and pure rolling
conditions, which are used to establish a kinematic-dynamical model. A normal
mode path tracking controller is designed according to feedback linearization
methods. Other modes are introduced systematically, where the model has sin-
gularities. For each such case a transition condition and a new control mode is
introduced. Specialized controllers are developed for such modes.

With the control automaton completed, we found for each mode, Lyapunov-
like functions, which combine to prove stability. In order to simplify the analysis,
we bound the Lyapunov functions by constant rate functions. This allows us
to show stability by analyzing a version of the control automaton, where each
mode contains a simple three state automaton that evaluates the constant rate
functions.

Discussion and Further Work In the systematic approach to deriving modes,
we list conditions when the normal mode model fails. Some of these, e.g. Cross
Driving, are rather obvious; but others, e.g. the Rest Con�guration, are less clear,
because they are conditions that make the controlled system ill conditioned. Such
problems are usually detected during simulation. Thus a practical rendering of
the systematic approach is to use a tool like State�ow and build the normal
mode model. When the simulation has problems, one investigates the conditions
and de�nes corresponding transitions. This is an approach that we believe is
widely applicable to design of supervisory or mode switched control systems.

Such an approach is evidently only safe to the extent that it is followed by a
rigorous stability analysis. The approach we develop is highly systematic. It ends
up with a constant rate hybrid automaton which should allow model checking of
its properties. In particular, whether it avoids unsafe transitions when composed
with an automaton modelling the reference input. A systematic analysis of this
combination is, however, future work.

Another point that must be investigated is, how the wheel reference output
is made bumpless during mode transitions. Finally, the idealized non-slip and
pure rolling conditions are of course impossible to meet in real-life applications
(especially the non-slip condition), and the e�ect of such perturbations must be
studied.
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A Vehicle Dynamics

Denote the rotation coordinates describing the rotation of the wheels around
their horizontal axes by φ = [φ1 φ2 φ3 φ4]T ∈ S4 and the radii of the wheels by



r = [r1 r2 r3 r4] ∈ R4. The motion of the four-wheel driven, four-wheel steered
robot is then completely described by the following 11 generalized coordinates:

κ =
[
X Y θ βT φT]T =

[
ξT βT φT]T (11)

and we can write the pure rolling, no slip constraints on the compact matrix
form

A(κ)κ̇ =
[
J1(β)R(θ) 0 J2

C1(β)R(θ) 0 0

]
κ̇ = 0 (12)

in which

J1(β) =




cos β1 sin β1 `1 sin(β1 − γ1)
cos β2 sin β2 `2 sin(β2 − γ2)
cos β3 sin β3 `3 sin(β3 − γ3)
cos β4 sin β4 `4 sin(β4 − γ4)


 , J2 = rI4×4,

C1(β) =




− sin β1 cosβ1 `1 cos(β1 − γ1)
− sin β2 cosβ2 `2 cos(β2 − γ2)
− sin β3 cosβ3 `3 cos(β3 − γ3)
− sin β4 cosβ4 `4 cos(β4 − γ4)


 , and R(θ) =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .

Following the argumentation in [6], the posture velocity ξ̇ is constrained to
belong to a one-dimensional distribution here parametrized by the orientation
angles of two wheels, say, β1 and β2. Thus,

ξ̇ ∈ span{col{R(θ)TΣ(βc)}}

where Σ(βc) ∈ R3 is perpendicular to the space spanned by the columns of C1,
i.e., C1(β)Σ(βc) ≡ 0 ∀β. Σ can be found by combining the expression for C1(β)
with equations for the orientation of wheels 3 and 4 to

Σ =




`1 cosβ2 cos(β1 − γ1)− `2 cos β1 cos(β2 − γ2)
`1 sin β2 cos(β1 − γ1)− `2 sin β1 cos(β2 − γ2)

sin(β1 − β2)


 .

The discussion above implies that the robot posture can be manipulated via
one velocity input η(t) ∈ R in the instantaneous direction of Σ(βc), that is,
R(θ)ξ̇(t) = Σ(βc)η(t) ∀t. Similarly, it is possible to manipulate the orientations
of the wheels via an orientation velocity input ζ(t) = [β̇1 β̇2]T ∈ R2.

The constrained dynamics of η are handled by applying Lagrange formal-
ism and computed torque techniques as suggested in [5] and [6]. The Lagrange
equations are written on the form [9]

d

dt

(
∂T

∂κ̇k

)
− ∂T

∂κk
= ck(κ)Tλ + Qk

in which T is the total kinetic energy of the system and κk is the k'th general-
ized coordinate. On the left-hand side, ck(κ) is the k'th column in the kinematic



constraint matrix A(κ) de�ned in (12), λ is a vector of Lagrange undetermined
coe�cients, and Qk is a generalized force (or torque) acting on the k'th gener-
alized coordinate.

The kinetic energy of the robot is calculated as

T =
1
2
κ̇T




R(θ)TMR(θ) R(θ)TV 0
V TR(θ) Jβ 0

0 0 Jφ


 κ̇ (13)

with appropriate choices of M , Jβ and Jφ. In the case of the wheeled mobile
robot we can derive the following expressions:

M =




mf + 4mw 0 −mw

∑4
i=1 `i sin γi

0 mf + 4mw mw

∑4
i=1 `i cos γi

−mw

∑4
i=1 `i sin γi mw

∑4
i=1 `i cos γi If + mw

∑4
i=1 γ2

i


 . (14)

Here, If is the moment of inertia of the frame around the center of mass, and
mf and mw are the masses of the robot frame and each wheel, respectively.
We note that since the wheels are placed symmetrically around the xv and yv

axes, the o�-diagonal terms should vanish. However, this may not be possible to
achieve completely in practice, due to uneven distribution of equipment within
the robot.

We denote the moment of inertia of each wheel by Iw and �nd

Jβ =
1
2
IwI4×4 and Jφ = IwI4×4 (15)

and

V =




0 0 0 0
0 0 0 0
Iw Iw Iw Iw


 . (16)

The Lagrange undetermined coe�cients are then eliminated in order to arrive
at the following dynamics:

h1(β)η̇ + Φ1(β)ζη = ΣTEτφ (17)
in which E = JT

1 J−1
2 ∈ R3×4 and τφ ∈ R4 is a vector of torques applied to drive

the wheels. The quadratic function h1(β) is given by
h1(β) = ΣT(M + EJφET)Σ > 0 (18)

and Φ1(β) ∈ R is given by
Φ1(β) = ΣT(M + EJφET)N(βc) (19)

and N(βc) = [N1 N2], where

N1 =



−`1 cos β2 sin(β1 − γ1) + `2 sin β1 cos(β2 − γ2)
−`1 sin β2 sin(β1 − γ1)− `2 cosβ1 cos(β2 − γ2)

cos(β1 − β2)


 (20)

N2 =



−`1 sin β2 cos(β1 − γ1) + `2 cos β1 sin(β2 − γ2)
`1 cosβ2 cos(β1 − γ1) + `2 sinβ1 sin(β2 − γ2)

− cos(β1 − β2)


 (21)



Equation (17) can be linearized by using a computed torque approach and choos-
ing τφ appropriately. The torques are simply distributed evenly to each wheel;
we observe that

ΣTEτφ = [a1 a2 a3 a4][τ1 τ2 τ3 τ4]T = L

where L is the left-hand side of equation (17). Then we set τφ = Hτ0, H ∈ R4

and choose Hi = Lsign(ai)/σ, where σ is the sum of the four entries in the
vector ΣTE. This distribution policy ensures that the largest torque applied to
the individual wheels is as small as possible. By now applying the torque

τ0 =
1

ΣTEH
(h1(β)ν + Φ1(β)ζη) , (22)

we obtain η̇ = ν, where ν is a new exogenous input. The result of the extension
is the dynamical model given in equation (1).

B Stability of Switched Systems

Consider a dynamic system whose behavior at any given time t ≥ t0, where
t0 is an appropriate initial time, is described by one out of several possible
individual sets of continuous-time di�erential equations Σ0, Σ1, . . . , Σµ, and let
x0(t), x1(t), . . . , xµ(t) denote the corresponding state vectors for the individual
systems:

Σj : ẋj = fj(xj(t)), j = 0, 1, . . . , µ

The governing set of di�erential equations is switched at discrete instances ti, i =
0, 1, 2, . . . ordered such that ti < ti+1∀i. That is, the system behavior is governed
by Σj in the time interval ti < t ≤ ti+1, then by Σk in the time interval ti+1 < t ≤
ti+2, and so forth. Assume furthermore that for each Σj there exists a Lyapunov
function, i.e., a scalar function Vj(xj(t)) satisfying Vj(0) = 0, Vj(xj) ≥ 0, and
V̇ (xj) ≤ 0 for xj 6= 0. It is noted that, by the last requirement, Vj is a non-
increasing function of time in the interval where Σj is active. Hence, it can be
deduced that the switched system governed by the sequence of sets of di�erential
equations is stable if it can be shown that

Vj(xj(tq)) ≥ Vj(xj(tr))

for all 0 ≤ j ≤ µ and tq, tr ∈ {ti}, where tq < tr are the last and current
switching time where Σj became active, respectively.


