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IMPACT OF SCHEDULING POLICIES ON CONTROL SYSTEM

PERFORMANCE

Henrik Schi�ler�, Anders P. Ravn�� and Jens Dalsgaard Nielsen�

Aalborg University,
�Department of Control Engineering
��Department of Computer Science

ABSTRACT

It is well known that jitter has an impact on control sys-
tem performance, and this is often used as an argument
for static scheduling policies, e.g. a time triggered archi-
tecture. However, it is only completion jitter that seriously
disturbs standard linear control algorithms in a way similar
to the delay inherent in a time triggered architecture. Thus
we propose that standard control algorithms are scheduled
dynamically, but without preemption. Analysis of this pol-
icy is contrasted with a corresponding time triggered archi-
tecture and is shown to have better impulse response per-
formance both in the deterministic case and under white
noise disturbances. The conclusion is that under very rea-
sonable assumptions about robustness of control algorithms,
they are insensitive to relase jitter, albeit strongly sensitive
to completion jitter, thus priority based scheduling without
preemption is may be preferable for such systems.

1. INTRODUCTION

Control systems are almost exclusively implemented on mul-
titasked computers, where task scheduling is determined by
a real-time scheduling policy. The overall performance of a
system is therefore dependent on cooperation between the
disciplines of control engineering and software engineering
of hard real-time systems. Highly optimized solutions may
be found by merging the disciplines [16, 17]; but the so-
lutions are usually highly specialized, and requires a de-
velopment e�ort by highly skilled people with a knowledge
spanning both areas. In most development organizations,
control and scheduling are done by di�erent specialists, thus
a smooth cooperation depends on a clear division of respon-
sibilities - a contract. The basis of a standard contract may
be phrased as follows:

The control engineers will deliver a collec-
tion of tasks to be executed periodically. Each
task is characterized by its period T and its
worst case computation time C.

The software engineer promises to execute
each task periodically with the given period
and with suÆcient computation resources for
the worst case computation time.

When both parties are conservative, i.e. the control
engineers use very robust algorithms and the software engi-
neers load the computers moderately, the cooperation works

well, and there is no need to elaborate the contract. How-
ever, when we want eÆcient solutions, the �ne print of the
contract becomes important. What does it mean to execute
a task periodically?.

The interpretation of the control engineer is that the
task is released and reads its inputs from sensors at times
rk for k = 0; 1; : : :, where the release times are equidistant
rk+1�rk = T , and where the �rst release r0 happens within
the �rst period of time. Furthermore, the tasks are assumed
to be completed at times ck = rk+C, when outputs to actu-
ators has been done. In some cases, controls are developed
assuming that computations take no time, i.e. C = 0; but
this assumption is clearly the responsiblity of the control
engineer and does not in
uence the common contract.

The software engineer, who applies a scheduling policy,
has another interpretation. A periodic task shall be exe-
cuted once within each of the periods [0; T ]; [T; 2T ]; [2T; 3T ]; : : :
(Here we make the usual assumption that the deadline for
a task is the same as its period.) Tasks may thus actually
be released and completed at times r0i; c

0
i 2 [T � i; T � (i+1)].

The di�erences Jri = ri � r0i and Jci = ci � c0i are respec-
tively the release and the completion jitter. Generally a
maximum release jitter may be guaranteed, i.e. Jri � Æ as
well as a maximum delay D between release and comple-
tion, i.e. Di = ci � ri � D.

The �ne print of an extended contract will explain, how
jitter is handled. For the control engineer, several com-
pensation mechanisms are possible [11]. They are typically
based on per sample modi�cation of the applied control law,
which requires knowledge of the actual jitter. The software
engineer may also choose scheduling disciplines that makes
jitter predictable. When we consider popular scheduling
policies, we have the following characteristics:

Static scheduling: With a preplanned schedule, there is no
jitter, or at most a small, amount due to asynchronous in-
terrupts.

A special case is the time triggered architecture [19,
3], where, similar to PLC-controllers, input is read at the
start of a period and output is produced at the end. Both
operations are assumed to take no time, which in general
is reasonable. One can say that in some sense, the release
jitter is minimized at the cost of maximized delay.

Dynamic scheduling: Here tasks are assigned priorities ac-
cording to some criteria, see e.g. [7, 4, 5] for deadline mon-
tonic, rate monotonic or other policies. When there are



only periodic tasks and when computation times do no vary,
there is no more jitter than in a static schedule; but in most
cases, where dynamic scheduling is used, because it adapts
better to situations with aperiodic tasks or server tasks,
jitter may become diÆcult to control. However, if schedul-
ing is done without preemption, delay almost is eliminated,
at the cost of introducing blocking and in turn increasing
release jitter for higher priority tasks.

When a system is developed, there are thus the following
options:

1. Use static scheduling or the time triggered approach
and pay the price in the form of complex analysis of
the concrete con�gurations.

2. Use dynamic scheduling and complicate real time con-
trol by jitter and or delay compensation.

The thesis of this paper is that we can avoid the com-
plexities for standard proportional control systems by us-
ing dynamic scheduling without preemption. In this very
common case, our analysis shows that control performance
is almost una�ected by release jitter, and that the control
performance is better than the one that can be expected
from a comparable time triggered scheduling policy.

Overview

The following section surveys related work, while Section 3
analyses the e�ect of release jitter on simple �rst order pro-
portional control systems, as well as the e�ect of delay, as
introduced in time triggered architectures. Jitter and delay
are analysed from deterministic and stochastic viewpoints.
Section 4 provides a generalization to higher order systems
of the approach presented in the previous section. Section
5 concludes and indicates directions for future research.

2. RELATED WORK

The study of sampled control systems is by no means new.
However the special case for irregular sampling due to real
time scheduling seem to gain much interest recently. The
paper [8] and the report [9] provide overviews of the prob-
lem and surveys of related work within real time systems
and control engineering. The article [10] considers sampling
delay and jitter and a rational model for varying delay is
presented along with an accompagning robust controller de-
sign based on �-synthesis [15]. The e�ect of limited sam-
pling jitter is illustrated by an example of a double inte-
grator. In [11] an online jitter compensation is introduced;
it uses per sample recalculation of control law parameters
based on timestamps. Optimal ressource distribution to
control tasks is investigated in [12] and [1]. In [1] the time
triggered approach is adopted as a basis for an optimiza-
tion scheme yielding optimal sampling periods under vari-
ous preemptive scheduling disciplines. Optimality is de�ned
on the basis of an appropriate objective function re
ecting
system robustness w.r.t. stability margins. The paper [18]
presents a technique to bound release jitter, based on the
modi�cation of task temporal parameters in DM and EDF
scheduling. In [13] we �nd stability analysis for sampled
systems with non-ideal sampling, where both jitter and de-
lay is considered. The sampling proces is considered for 3

cases: constant, periodic and general. In the general case
a simple common one sample criterion is assumed for the
transition matrix.

In comparison, our work provides analytical results for
the impact of jitter on linear control system comprising �rst
and higher order continuous time systems equipped with
state proportional discrete time controllers. We advocate a
simplistic approach allowing release jitter whereas delay is
considered tightly bounded since non preemptive scheduling
is assumed. As in [1] we consider neither redesign nor on line
adaptation to accomodate for sampling irregularities. We
choose the time triggered approach from [1] as a paradigm
for comparison and provide robustness analysis for jittered
sampling similar to [13], however, our analysis of the sample
process is more general than presented in [13].

3. FIRST ORDER CONTROL SYSTEMS.

Consider a �rst order continous time dynamic system evolv-
ing in time according to di�erential equation (1)

_x = A � x+B � u (1)

A ZOH-equivalent continuous to discrete transformation [6]
produces the following discrete time system

xk+1 = FT � xk +GT � uk (2)

wher FT and GT are given by

FT = exp(AT ) (3)

GT =
B

A
� (exp(AT )� 1) (4)

and T is the nominal time between samplings k and k + 1.
Assume that a discrete time state space control law K is
derived yielding a closed loop system

xk+1 = FT �xk�GT �uk = (FT �GT �K) �xk = QT �xk (5)

where QT is given by

QT = exp(AT )(1�
KB

A
) +

KB

A
(6)

As an example let A = �0:02; B = 1; T = 1 and the nom-
inal pole placement be QT = 0:8 then K = 0:18. Thus by
proportional feedback the bandwidth of a stable �rst or-
der system is increased approximately be a factor 10 which
seems reasonable.

3.1. Deterministic analysis of jitter

Suppose sampling times vary over time, so that the time
between samplings k and k+1 is now Tk, then the following
solution to (5) is found

xk = �k�1
j=0QTj � x0 (7)

where Tj = r0j+1 � r0j . Assuming Jri � Æ for some positive
real number Æ, we obtain

m T � Æ �

k+m�1X
i=k

Ti � m T + Æ for all k;m � 0 (8)
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Figure 1: Nominal, delayed and jittered step error re-
sponses.

We consider error convergence in response to a reference
value change at t0 > 0. The �rst sampling instant following
the change may ultimately be delayed Æ. After the �rst
sampling, convergence may be bounded as in inequality (9).
Assuming QTj > 0, QTj is decreasing in Tj , so for the
constraints (8) there is a symmetric interior maximum Tj =

T � Æ
k
for xk on the hyperplane

Pk�1

j=0
Tj = kT � Æ, i.e.

xk = x0 �
k�1
j=0QTj

= x0 �
k�1
j=0 (exp(ATj)(1�

KB

A
) +

KB

A
)

� x0 �xk

= x0 (exp(A(T �
Æ

k
))(1�

KB

A
) +

KB

A
)k (9)

The above reasoning is based on the assumption thatQTj >
0 which however, is considered to be a rather mild restric-
tion. For the simple example above, the bound for Tj ensur-
ing QTj > 0 would be Tj � 5:26 T , which is equivalent to
occasional vacations of the sampling process lasting more
than 5 times the nominal sampling period. The latter is
clearly quite signi�cant.
An overall upper bound for error convergence is found by
the pairs (t0 + Æ + kT; x0�xk) as shown in Figure 1, where
Æ = T is assumed for the above example to make it compa-
rable with the delayed situation.

3.2. Deterministic analysis of time triggered con-

trol

Fixed priority scheduling along with the celebrated RMA
priority assignment [2] as well as EDF schdeduling [2] pro-
vide conditions for completion jitter below task periods, i.e.
T . When control dynamics are slow compared to the nomi-
nal sampling rate such an approach may work satisfactory,
but it may also deteriorate even reasonably robust nominal
designs signi�cantly.
Introducing a one period in loop delay to the example from

the previous section results in the second order system of
equation (10)

x1n+1 = x2n

x2n+1 = �K GT x1n + FT x2n (10)

with a resulting pole pair (0:23; 0:73). Impulse responses for
the nominal system and its delayed counterpart in Figure
1 show a signi�cant overshoot of about 20 % introduced by
delay.
Delay compensation can for �xed delay of one single or an
integer number of sample periods be performed through
the well known Smith predictor governed by the dynamics
in equation [14].

x̂k+1 = FT � x̂k +GT � uk

uk = �K(xk�1 � x̂k�1 + x̂k) (11)

The result of compensation is also shown in Figure 1 reveal-
ing the expected closed loop response with an additional
delay of 1 sample period. Ideally more advanced control
designs should accompany application of the Smith predic-
tor as pointed out in [14]. However we believe the rather
simplistic approach above is justi�ed for comparative rea-
sons since we compare approaches of similar complexities.

3.3. Comparison for deterministic analysis

When QTp > 0, no overshoot is introduced by release jitter.
Thus convergence speed is simply stated in time constant
or settling time terms, i.e. t� = minfÆ+kT j �xk � �g where
� assumes values 0:33 or 0:01 for time constant or settling
time respectively. As seen in Figure 1 jitter increases the
time constant from 5 to 6 sampling periods and settling
time is approximately unchanged from the nominal case. It
must be noted that the delayed impulse response is superior
to both the nominal and the jittered ones when observing
time constant and settling time alone. However in many
cases overshoot is undesirable or even hazardous, as in po-
sitional controllers for mechanical systems, and in general
overshoot may indicate robustness problems, i.e. the abil-
ity to maintain stability under system uncertainties. All to-
gether the jittered response is by most standards far closer
to the nominal design than the delayed one. Application
of the Smith predictor produces a result almost identical to
the worst case jittered response.

3.4. Stochastic analysis.

Disturbances are incorporated into the state space model by
restating equation (1) as a stochastic di�erential equation,
i.e.

dx = A � x+B � u+ dw (12)

where w is a standard brownian motion. Let tk and tk+1
be separated by Tk in time and de�ne xk by

xk = x(tk) (13)

then the following stochastic discrete time model is obtained
from a ZOH transformation

xk+1 = FT � xk +GT � uk +

Z Tk

0

eA�(Tk��)dw (14)



The last term is readily shown to be an independent Gaus-
sian random variable wk with a variance Cw(Tk) given by

Cw(Tk) =

Z Tk

0

e2A�(Tk��)d� (15)

Introducing the discrete time state space control law K the
following approximative closed loop model is obtained

xk+1 = QTkxk +
p
Cw(Tk) � wk (16)

where wk is a standard Gaussian variable. Computing vari-
ances yields

�2k+1 = Q2
Tk
�2k + Cw(Tk) (17)

In general, it is diÆcult to see which pattern of fTjg maxi-
mizes (17). We shall proceed less general. We assume Æ = T
and deduce results valid for the above example. In that case
all sequences fT1; ::; Tng reside within the sets Dn � Rn de-
�ned by

Dn = f(T1; ::; Tn) j (k � 1)T

�

i+k�1X
j=i

Tj � (k + 1)T 8(i; k) j i; k � 1; i+ k � 1 � ng

The variance �2n = �(T1; ::; Tn) + �n�1
j=0Q

2
Tj

� �20 , where �

is independent of �20 . Thus under stability assumptions
for sequences fTjg where (T1; ::; Tk) 2 Dk, limn!1 �2n =
�(T1; ::; Tn), i.e. the e�ect of initial conditions disappear.
Next we de�ne �2n(T1; ::; Tn) by

�2n(T1; ::; Tn) = �(T1; ::; Tn) + �n�1
j=0Q

2
Tj
�M (18)

where

M =
Cw(2T )

1�Q2
2T

(19)

i.e. �2n = �2n(T1; ::; Tn) for the case �
2
0 =M . We de�ne Mn

by
Mn = max

(T1;::;T2n)2D2n

�22n(T1; ::; T2n) (20)

and likewise

g(x; y) = Cw(x) +Q2
x Cw(y) +Q2

x Q
2
y M (21)

Assume Mn�1 = M and let the real sequences Sk be
de�ned by Sk 2 R2k

+ , Sk(i) = 0 for i = 0; 2; ::; 2(k � 1) and
Sk(i) = 2T for i = 1; 3; ::; 2k � 1

Since Sn 2 D2n

Mn � �22n(Sn) = g(2T; 0) (22)

By de�nition of g in (21)

Mn � max
(x;y)2D2

g(x; y) (23)

It can be veri�ed for the above example that

max
(x;y)2D2

g(x; y) = g(2T; 0) (24)
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Figure 2: Maximizing the function g within D2

as illustrated in �gure (2). So by inequalities (24) and (22)
Mn = g(2T; 0) = �22n(Sn) =M .

Since

lim
n!1

�2n = lim
n!1

�2n(T1; ::; Tn) = �(T1; ::; Tn) (25)

M asymptotically bounds �2n independent of the initial vari-
ance.

For the example above, the variance in the nominal case

would amount to Cw(T )

1�Q2

T

= 2:74. The above analysis gives

an assymptotic variance bound of M = 3:05 assumed for
sampling period sequences f0; 2T; ::; 0; 2Tg equivalent to the
case where each second sample is released exactly one sam-
ple period to late or to a periodic sampling with a double
period.

With time triggered feed back, analysis is carried out
through standard matrix analysis of the second order sys-
tem (26)

x1n+1 = x2n

x2n+1 = �K GT x1n + FT x2n + wn (26)

where wn is a normally distributed random variable with
zero mean and variance Cw(T ) it can be found that the er-
ror variance amounts to 3.28 for the above example, which
is a signi�cant increase from the nominal case. In this ex-
ample, jitter of one sample period increases error variance
only half as much as a time triggered delay of one sample
period. Performing similar computations for an equivalent
system with Smith predictor, as described in equation (11),
yields 3.7 for the stationary output variance. A simplis-
tic use of the Smith predictor in conjuction with a time
triggered sampling approach should therefore be strongly
discouraged, whereas more advanced control designs may
yield highly improved performance as pointed out in [14].



4. GENERALIZATION TO HIGHER ORDER

SYSTEMS.

Analysing simple systems may yield insight and give guide-
lines for a more general approach. In this section we shall
provide a generalization to higher order systems as well as a
general approach to stochastic analysis with arbitrary jitter
bound Æ.

Consider a continous time dynamic system evolving in
time according to di�erential equation (27)

_x = A � x+B � u (27)

A ZOH-equivalent continuous to discrete transformation
produces the following discrete time system

xk+1 = FT � xk +GT � uk (28)

wher FT and GT are given by

FT = exp(AT ) (29)

GT =

Z T

0

exp(A(T � t))dtB (30)

T is the nominal time between samplings k and k + 1 and
exp(�) is the matrix exponential. Assume that a discrete
time state space control law K is derived giving a nominal
closed loop system

xk+1 = FT �xk+GT �uk = (FT �GTK) �xk = QT �xk (31)

for QT = FT �GTK

4.1. Deterministic Analysis.

We shall proceed with the aid of the following �rst order
approximation for QT

QT = I +A � T �B �K � T = I + T � (A�BK) (32)

which is valid whenever jAT j << 1. Then the approximate
eigenvalues of QT are found to be

�T = (1 + T � �) (33)

where � is a corresponding eigenvalue of A � BK. Up to
a �rst order approximation eigenvalues of QT match those
of A � BK, i.e. they are constant. Assuming K to be
chosen so that A � BK has distinct eigenvalues, a basis
of eigenvectors V = [v1; v2; ::; vn] exists. De�ning principal
outputs z by zk = V �1xk we obtain in correspondence to
equation (7)

zik = �k�1
j=0�

i
Tj
� zi0 (34)

where �iTj = (1 + T � �i), i.e. a 1. st order approximation
of the i th. eigenvector of QTj . Thus a modulus bound on
zk is

jzikj = �k�1
j=0 j�

i
Tj
j � jzi0j (35)

For a well damped nominal design and low values of T �
j�ij, j�iT j is decreasing approximately aÆnely with T , so as
for the one dimensional case, there is a symmetric interior

R

I

Extreme points of terms

Bounds on linear combination

Figure 3: Computing bounds for complex linear combina-
tion.

maximum Tj = T� Æ
k
for jzikj on the hyperplane

Pk�1

j=0
Tj =

kT � Æ for the constraints (8). Thus a closed form modulus
upper bound is given by

jzikj � j1 + (T �
Æ

k
) � �ij � jzi0j = �zik (36)

Lower modulus bound are found by realizing that products
attain minimum values in extreme points of the constraint
set. So generally we have

jzikj � jzi(m T )jd
k
m
e (37)

for (m�1) T � Æ � m T . Inequality (37) expresses modulus
bounds m T; 0; ::; 0; m T; 0; ::; 0;m T; 0; ::
For the phase �ik of zki we have

�ik =

k�1X
j=0

6 �iTj + 6 zi0 (38)

and a corresponding �rst order approximative bound

k 6 �iT + �iT Æ + 6 zi0 � �ik � k 6 �iT � �iT Æ + 6 zi0 (39)

where �iT denotes the �rst order derivative of �iT w.r.t. T ,
computed at the nominal design values. Upper and lower
bounds for system states xk are found by inspecting xk =
V zk for maximal and minimal values, as illustrated in �gure
(3). The required linear combination of complex numbers is
performed every combination of extreme values of modulus
and phase.

4.2. Example: Mechanical system.

Working cycles of mechanical automata are frequently de-
�ned by stepwise positional changes. Transitions should
most often comply to speci�cations on rise time, settling
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Figure 4: Root locus and corresponding moduli and angles
for varying sample period in mechanical system.

time and overshoot. Between transitions reference posi-
tions should be maintained in the presence of mechanical
disturbances in the shape of random forces acting on the
system.

Our example system is de�ned in state space form by

_x = A � x+B � u+ C � w (40)

where

A =

�
0 1
0 �0:2

�
(41)

and B = C = [0 1]T . State vector components are position
and velocity respectively. For nominal pole placements (1+
0:2 � exp(�i � 3=4 � �); 1 + 0:2 � exp(i � 3=4 � �)) a feedback
vector K = [0:05 0:1] is obtained. Root (pole) locus and
corresponding moduli and angles for sample periods varying
over [0; 2T ] are shown in Figure 4, to validate the �rst order
approximation conducted. In Figure 4 the nominal design
is indicated with "*".

Step response error results for the nominal design, the
time triggered approach as well as upper and lower bound
for the jittered approach and Æ = T are found in Figure 5.

As seen in Figure 5 jitter may increase the time constant
and overshoot. Overshoot from one time delay is however
even higher, though not signi�cantly. Allthough the exam-
ple is carried out for Æ = T the approach presented remains
generally valid within the validity domain of the �rst order
approximations conducted.

4.3. Stochastic analysis.

We obtain the following recursion for the covariance matri-
ces of a jittered system

�k+1 = �(1)(�k; Tk)
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−0.2

0

0.2

0.4

0.6

0.8

1
Delayed     
Nominal     
Jitter bound

Figure 5: Nominal, delayed and jittered step responses of
mechanical system.

= QTk�kQ
T
Tk

+N(Tk)

(42)

where

N(T ) =

Z T

0

exp(A(T � t))CCT (exp(A(T � t)))Tdt (43)

for which a close form expression is available by realizing
the the eigenvectors of exp(At) remain constantly identical
to the eigenvectors of A and the eigenvalues of the ma-
trix exponential are found by taking exponentials of the
eigenvalues of A. We let M denote the set of, real sym-
metric, positive de�nite matrices of appropriate dimension,
i.e. �k 2 M . Higher powers of �(1)(; ) may be recursively
de�ned by

�(n+1)(�k; Tk+n; ::; Tk) = �(1)(�(n)(�k; Tk+n�1; ::; Tk); Tk+n)
(44)

A recursive expression for release jitter by the sampling
intervals Tk is given by a nondeterministic automaton in the
shape of a double token bucket �lter. We de�ne the bucket
heigth �ck recursively by

�ck+1 = minfÆ;maxf0; �ck + Tk � Tgg (45)

and Tk nondeterministically by �ck + Tk � T � Æ, then for
�c0 2 [0; Æ] the automaton generates exactly all sequences

fTkg, where
Pk+m�1

i=k
Ti � m T + Æ. Conversely a bucket

depth ck is de�ned recursively by

ck+1 = maxf�Æ;minf0; ck + Tk � Tgg (46)

and ck + Tk � T � �Æ. In this case for c0 2 [�Æ; 0] the au-

tomaton generates all sequences fTkg, where
Pk+m�1

i=k
Ti �

m T � Æ. Combining (45) and (46) and requiring

�Æ + T � ck � Tk � Æ + T � �ck (47)
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Figure 6: Stationary variances of nominal, jittered, delayed
and regularly jittered systems.

our automaton generates exactly sequences wherem T�Æ �Pk+m�1

i=k
Ti � m T+Æ, i.e. the sampling sequences ful�lling

(8). Including the covariance matrix de�ned in (42) into the
state of our automaton, we have a state vector [ck; �ck;�k]
of a nondeterministic automaton de�ned by (42),(45),(46)
and (47).

We de�ne the state S0 = [0; Æ;�] where � uniquely

solves � = �(1)(�; T ). When for someK > 0 �K(�; Tk+K�1; ::; Tk)
is a contraction for all sequences ful�lling (8), then the
reachable set from S0 is bounded. For stable nominal de-
signs it is readily veri�ed that S0 is globally assymptotically
reachable.

Now �(1)(�; T ) is continous for all T 2 [0; Æ]. Consider
some state S reachable from S0 and an �-neighbourhood
of S. Then there exists a �-neighbourhood B� of S0, so
from all states in B� some state within B� is reachable.
Alltogether de�ne I as the set of all states assymptotically
reachable from S0, then all states in I are mutually as-
symptotically reachable. Thus I is the closure of a unique
smallest invariant set of the de�ned non deterministic au-
tomata.

Obtaining feasible hard bound estimates of I consitutes
a challenge left for further research. However random ex-
plorations where Tk is drawn uniformly within the limits of
(47) yields a �nite dimensional irreducible, ergodic Markov
chain � with a stationary distribution concentrated on I.
Additonally for every interior point r 2 I, there is a neigh-
bourhood with positive measure. Thus empirical distribu-
tions of � may constitute feasible I estimates. Results of
such an approach for the mechanical system de�ned above
for Æ = T are shown in Figure 6

Along with results from nominal, jittered and delayed
systems, results from a regular jitter pattern is also shown

in Figure 6. Jitter and delaying produces approximately the
same increase in velocity variance, whereas delaying yields
a signi�cantly higher positional variance.

5. DISCUSSION AND FUTURE WORK

In the above we considered di�erent approaches to the im-
plementation of discrete time controllers on multitasking
platforms. We argue that the time triggered approach and
pre emptive scheduling may introduce undesirable perfor-
mance drawbacks such as decreased robustness w.r.t. sta-
bility, overshoot and additional control error variance. An
alternative approach based on dynamic non preemptive schedul-
ing and thus allowing signi�cant release jitter but bounding
delay in the feedback loop is proposed. A typical propor-
tional control system is analyzed under both schemes, and
results strongly support the initial thesis that the non pre-
emptive priority based scheduling performs better than a
time triggered approach for standard control algorithms.
The nonpreemptive approach alters the deterministic sys-
tem response only insigni�cantly and overshoot is hardly
possible as opposed to the time triggered approach. The
e�ect of white noise disturbances is investigated and the
proposed approach again performs signi�cantly better than
its time triggered counterpart. Deterministic and stochas-
tic analysis of the e�ect of jitter in higher order systems is
presented and an example mechanical system is presented.
Both deterministic and stochastic results point in favour of
the non preemptive approach.

Altogether we �nd evidence that nonpreemptive prior-
ity based scheduling is well suited for control algorithms.
In contrast to a static schedule, well known priority as-
signment schemes can be used. A slight diÆculty is the
default preemptive implementation of control tasks found
e.g. in POSIX compliant operating systems like RT-Linux.
Non preemptive kernels are typically lighter than their pre-
emptive counterparts and thus more suitable for embed-
ded applications. From a performance, view point, context
switching is typically lighter in non preemptive systems.
Preemptivenes typically generates platform dependence, so
migrating preemptive kernels to alternative embedded en-
vironments may by unessesarily tedious.
The example systems presented are simple though repre-
sentative relevant control system existing. The results pre-
sented in this work call for signi�cant generalization higher
order controllers, e.g. with integral action or oberver schemes,
coloured noise disturbances, measurement noise, open loop
unstable systems and even non linear systems. The imme-
diate direction of our future work point towards the analysis
of higher order state controlled systems with observers and
controllers with integral action.
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