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Test for Nonlinear Input Output Relations in SISO Systems
by Preliminary Data Analysis

Torben Knudsen

Abstract

This paper discusses and develops preliminary statistical tests for detecting nonlinearities in the de-
terministic part of SISO systems with noise. The most referenced method is unreliable for common noise
processes as e.g. colored. Therefore two new methods based on superposition and sinus input are devel-
oped. They are much more robust, especially the sinus method which is reliable also for colored, heavy
tailed or skew distributed noise.

Keywords: Nonlinearity test; preliminary test; identification; Subba Rao test; Robust methods;

1 Introduction

For some years there has been a substantial and increasing research on estimation of parameters in non-
linear dynamical models from experimental input output data. Deriving nonlinear models are much more
complicated than deriving linear models. Consequently, if there is doubt about the existence or significance
of nonlinear effects a good preliminary test for linearity would be very useful [5, p. 652]. Test of this kind
exists [1]. They are based on methods developed for time series and uses third order correlations. These
tests suffers from lack of robustness and do not have well defined statistical properties.

Therefore the objectives in this paper are: To develop tests based on basic properties for linear systems
namely superposition and sinus input gives sinus output. And to compare the statistical properties for these
test with the existing ones. The test should be kept robust and simple and applicable before a candidate
model is found.

Below the problem is first discussed in more details. Then existing methods are explained. This is followed
by the development of new methods. The statistical properties are then analyzed and finally a conclusion
is drawn.

2 Choice of problem

It is important to consider the different choices that together specifies the problem. To that end some
notation are first introduced. AssumeN samples of inputu and outputy are measured from a SISO system
and collected in vectorsU andY (1)–(2).

U ,
(
u(1) . . . u(N)

)T
(1)

Y ,
(
y(1) . . . y(N)

)T
(2)

To get a solvable problems it seems to be necessary to assume the noisev(t) stochastic stationary (3e)
and additive (3a). Of cause it could also be multiplicative and then a logarithmic transformation gives the
additive structure. It is also necessary to assume the initial conditions known (in some sense) otherwise

1

http://www.control.auc.dk/~tk


they would enter in (3a), assume therefore that the system is initially at a stationary state given byu(1)
which is obtained by (3c).

y(t) = ft(ut1) + v(t) , t ∈ N (3a)

ut1 ,
(
u(1) . . . u(t)

)T
(3b)

u(t) = u(1) ∀ t < 1 (3c)

u, v are independent (3d)

v stationary (3e)

E(v(t)) = 0 , Var(v(t)) = σ2
v (3f)

The choices specifying the problem are the following:

• Preliminaryanalysis methods i.e. method based on data before a candidate model is found orvali-
dationmethods based on a candidate model.

• Assumptions aboutu.

• Assumptions aboutv as e.g. white noise and normal distribution.

• Properstatisticaltest or tests based onindicatorswith no precise statistical properties.

In this paper the choices are a proper preliminary statistical test method whit as few assumptions onu and
v as possible.

3 Existing methods

For time series this problem is well covered and there has been developed a number of methods starting
with the Subba Rao (SR) method [10, sec. 5.3]. This method are based on the fact that third order moments
of linear combinations of white noisee with symmetrical distributionfe are zero.

v(t) =
∞∑
i=0

aie(t− i) , fe(x) = fe(−x)⇒ (4)

E(v(t1)v(t2)v(t3)) = 0 ∀ t1, t2, t3 ∈ Z (5)

There also exist a well known statistical method of validation type where specific nonlinear terms can be
tested [7, 8]. This test are based on correlating residualsε with effects, if e.g.E(ε(t)u(t)2) 6= 0 thenu(t)2

should be include in the model. This residual validation test can be generalized to test for missing effects
of any type [2]. A very different validation test of indicator type is found in [6].

The literature covering preliminary methods for systems with measurable input is more limited. The ref-
erence text books on system identification [7, 8] only gives a brief discussion on the problem and some
references. For purely deterministic systems 10 indicator methods are presented in [4]. The statistical test
methods for noisy systems are based on the ideas from the Subba Rao test. In [1] the following is shown:

Assume

y(t) = ft(ut1) + v(t) (6a)

u(t) = uc(t) + b , b 6= 0 (6b)

uc, v independent (6c)

E(v) = E(uc) = 0 (6d)

E(v2n+1) = E(u2n+1
c ) = 0 ∀n ∈ N (6e)
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v(t) is a linear stochastic process as defined by (4) (6f)

then

E(yc(t+ τ)yc(t)2) = 0 ∀ τ ∈ Z , yc(t) = y(t)− E(y(t)) (7)

if and only if

ft is linear inut1 (8)

The test suggested in [1] is then to reject linearity if the estimated correlation|φ̂ycy2
c
(τ)| corresponding to

(7) is to large (9). The correlation estimate is defined in the usual way (10).

reject linearity if|φ̂ycy2
c
(τ)| > 1.96√

N
(9)

φ̂xy(τ) ,
Ĉovxy(τ)√

Ĉovxx(0)Ĉovyy(0)
, (10)

Ĉovxy(τ) ,

{
1
N

∑N−τ
t=1 (x(t)− x̄)(y(t+ τ)− ȳ) , τ ≥ 0

Ĉovyx(−τ) , τ < 0
, x̄ ,

1
N

N∑
t=1

x(t) (11)

Notice that the test (9) is only approximate because it requires the additional assumption thatyc andy2
c

must be white noise [7, sec. 16.6] which normally is not the case. However, especially with a small number
of samples it is difficult to obtain a more exact test.

It is not clear in [1] whichτ to use and what to do if only one or few correlations falls outside the limits.
In this paper|τ | ≤ 12 is used because this is the number used in the examples in [1]. To obtain a p-value
it is chosen to use theχ2 test (12)–(13) whereF−1

χ2(2τm+1) is the inverse distribution function for aχ2

distribution with2τm + 1 degrees of freedom. This test is consistent with (9) because it requires the same
assumptions.

T = N
∑
|τ |≤τm

φ̂ycy2
c
(τ)2 , τm = 12 (12)

p = 1− F−1
χ2(2τm+1)(T ) (13)

The choice of input is only limited by (6e) according to [1]. This includes e.g. a symmetrical distributed
random process which also is sufficient for (7) to hold. However, with a limited number off samples the
test (12)–(13) is very sensitive to departures from the sample version of (6e) i.e.1

N

∑N
t=1 u

2n+1
c = 0.

Consequently a sinus input with a integer number of periods is used in this paper which also is used for the
examples in [1].

The main problem with the method above is that only the limiting conditions (7) is proven. Moreover there
is no results concerning the statistical properties of the suggested test.

4 New methods

Clearly there are several reasons to develop new methods. As seen in (9) the inputu does not explicitly
enter the test at all, this is because it is based on a time series approach. The methods developed here should
make more use of the input and the basic properties for linear systems because this will probably be more
power full. The first method suggested is based on superposition and the second one is based on that sinus
input gives sinus output for linear systems.
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Non-Linearity test based on superposition

In short the method is to compare the difference between the response to a sum of two inputs and the sum
of responses to the inputs with the variance on the noise.

The simplest solution is first to choose an appropriate input sequenceU . Run this two times through the
system and run2U through the system. This produces the following signals whereVi is the noise sequence
corresponding toUi.

U2 , U1 , U , U3 , 2U (14)

Yi = F (Ui) + Vi , i = 1, 2, 3 (15)

Introduce also the differences (16) and (17) then the following basic theorem is easily obtained.

D1 , Y2 − Y1 = V2 − V1 (16)

D2 , Y3 − Y2 − Y1 = F (2U)− 2F (U) + V3 − V2 − V1 (17)

Theorem 1 (Superposition method with 3 sequences (SUP3)).Assume the system is given by(3) and
the sequencesV1, V2, V3 are independent, then:

D1, D2 are uncorrelated and independent ifVi are normal (18)

E(DT
1 D1)

2N
= σ2

v (19)

E(DT
2 D2)

3N
≥ σ2

v (20)

F (2U) = 2F (U)⇔ E(DT
2 D2)

3N
= σ2

v (21)

Proof. (18) is proven by using independence forV1, V2, V3, U andE(V2V
T
2 ) = E(V1V

T
1 ) which gives

E(D1D
T
2 ) = E((V2 − V1)(F (2U)− 2F (U) + V3 − V2 − V1)T ) = 0 (22)

(20)–(21) are proved by

E(DT
2 D2) = E((F (2U)− 2F (U))T (F (2U)− 2F (U))) +N3σ2

v (23)

Finally (19) follows directly from (16).

The test for linearity is now performed by testing superposition (24) which reduces to comparing variances

for the stochastic processesd1(t) and
√

2
3d2(t) (25) where the means are assumed zero anddi(t) are the

elements inDi. This variance test is discussed after the next section.

H0 : F (2U) = 2F (U) H0 : F (2U) 6= 2F (U) (24)

H0 : Var

(√
2
3
d2

)
= Var(d1) H1 : Var

(√
2
3
d2

)
> Var(d1) (25)

There is however at least one type of nonlinearities (57) and input which the above test is insensitive to. In
this case the similar method below with 5 sequences can be used.

U2 , U1 , U , U3 , U4 , U5 , U3 + U4 (26)

Yi = F (Ui) + Vi , i = 1, 2, 3, 4, 5 (27)

D1 , Y2 − Y1 = V2 − V1 (28)

D2 , Y5 − Y4 − Y3 = F (U5)− F (U4)− F (U3) + V5 − V4 − V3 (29)
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Theorem 2 (Superposition method with 5 sequences (SUP5)).Assume the system is given by(3) and
the sequencesV1, V2, V3, V4, V5 are independent, then theorem 1 also applies toD1, D2 defined for five
sequences(28)–(29) except thatD1, D2 is always independent and the linearity condition in(21) is now
F (U5) = F (U4) + F (U3).

Proof. Similar to the proof for theorem 1

Non-Linearity test based on sinus input

The sinus response method is very similar to the superposition method above. Here the difference between
the output and a estimated sinus is compared to the noise variance.

Assume that the input is now a sinus (30) with appropriate choices ofa andω. Notice that the system
is also initialized by the sinus input which strictly speaking violates (3c), however it still serves the same
purpose. Assume thatω = k2π

N , k ∈ N thenN is a multiple of the period which makes it possible in
practice to use one long sequence with2N samples forU1 andU2. Below some of the previous notation
are reused.

u(t) = a sin(ωt) , t ∈ Z (30)

U2 , U1 , U (31)

Yi = F (Ui) + Vi , i = 1, 2 (32)

Introduce also the differences (33) and (37) below whereŶi is a simple LS estimate. This then gives the
next theorem.

D1 , Y2 − Y1 = V2 − V1 (33)

X ,


sin(ω) cos(ω)
sin(2ω) cos(2ω)

...
...

sin(Nω) cos(Nω)

 (34)

θ̂i , (XTX)−1XTYi , i = 1, 2 (35)

Ŷi , Xθ̂i , i = 1, 2 (36)

D2 , (Y2 − Ŷ2) + (Y1 − Ŷ1) (37)

Theorem 3 (Sinus input method (SIN)).Assume the system is given by(3) except for(3c) whish is re-
placed by(30)and the sequencesV1, V2 are independent, then:

E(DT
1 D1)

2N
= σ2

v (38)

assymtotically forN →∞

E(DT
2 D2)

2N
≥ σ2

v (39)

and for a linear system

E(DT
2 D2)

2N
= σ2

v (40)

D1, D2 are uncorrelated (41)
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Remark 3.1.In the statistical tests it is convenient to haveD1 andD2 uncorrelated which is the reason for
the specific choice (37) ofD2.

Remark 3.2.It is also possible to estimate a commonθ by the LS problem (42). This does not change the
convergence properties in the theorem but it improves the estimate a little.[

Y1

Y2

]
=
[
X
X

]
θ (42)

Proof. If the system is linear thenft(ut1) = α sin(ωt) + β cos(ωt) for someα, β and, because regressors
are uncorrelated with noise, the LS estimate is consistent i.e. the following mean square (ms) convergence
applies:

θ̂i →
(
α β

)T
, ŷi(t)→ ft(ut1)

, y(t) − ŷi(t) → vi(t) , d2(t) → v2(t) + v1(t) (ms) forN → ∞ (43)

which proves (40) and (41). (38) and (39) are now straight forward.

The test (46) following from theorem 3 is similar to (25) except no scaling is required.

Statistical test comparing two variances

The above developed linearity tests are both turned into test of equal variances for two stochastic processes
which are zero mean underH0. Adopting the notation from the sinus input method the problem is the
following: Given data (44) and basic assumptions (45) find tests for (46).

di(t) , t = 1, . . . N , i = 1, 2 (44)

di stationary , E(di(t)) = 0 , d1(t1), d2(t2) uncorrelated ∀ t1, t2 (45)

H0 : Var (d2) = Var(d1) H1 : Var (d2) > Var(d1) (46)

In all casesdi are linear combinations of independent system noise processesvi. Thus underH0 di’s are
all zero mean and with the same autocorrelation function asv(t). Therefore the assumption about second
order properties for the noisevi also applies todi underH0 which is very convenient.

To develop a proper statistical test a test statistic and its distribution underH0 are required. The basic
assumptions (45) are really minimal for this purpose. Below a number of test are presented with decreasing
restrictive assumptions i.e. increasing robustness.

Normal white (NW): The noise samplesvi(t) are normal and mutually independent with varianceσ2
v

(NID(0, σ2
v)) then the standard F test (48) and p-value (49) can be applied. When the sinus method with

two parameters estimated is used with normal white noise it is more correct to useF (N − 2, N − 2) in
(48)–(49).

H0 ⇒ di(t) ∈ NID(0, σ2
d) ∧ d1, d2 independent⇒ (47)

T =
∑N
t=1 d2(t)2∑N
t=1 d1(t)2

∈ F (N,N)⇒ (48)

p = 1− F−1
F (N,N)(T ) (49)
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Normal colored (NC): The noisevi is a linear normal process (4) with a unknown correlation structure.
In this case the results above does not hold. One way to obtain a more white sequences is the whitening
method wheredi is filtered with the inverse of a estimated transfer function. This has several drawbacks,
a transfer function with unknown structure must be estimated, if the structure does not match the real one
the method does not work to well and finally underH1 the difference betweend2 andd1 will for some
nonlinearities bee dominated by a low frequent component which the filter might remove and thereby
spoiling the power of the test. The alternative approach used here is to find a correlation lengthnr where
correlation betweendi(t) anddi(t+ τ) is small forτ ≥ nr and then resample everynr sample and finally
use the NW method on the decimated sequences. The correlation lengthnr is estimated by (50) where the
lag one autocorrelation̂ρ1 is the standard correlation coefficient estimate ford1. This method is based on
an AR(1) approximation. However it has proven robust in simulation experiments at the cost of reduced
number of samples and thereby power.

|ρ̂1|nr = ρl ⇔ nr =
log(ρl)

log(|ρ̂1|)
, ρl = 0.31 (50)

The reason for the seemingly large choiceρl = 0.31 is that it corresponds to 5% of the standard deviation
ondi(t+ nr) explained bydi(t) which turn out to be a suitable value.

White (W): The noise samplesvi(t) is mutually independent with varianceσ2
v and equal but unknown

distribution (ID(0, σ2
v)). Then the non-parametric squared ranks test (51)–(54) is used with the normal

approximation for the test statistic.d1 andd2 are ranked together andR(d2(t)) are the ranks ford2, see [3,
sec. 5.3] for details.

T =
S − µS
σS

, S =
N∑
t=1

R(d2(t))2 (51)

µS =
N(2N + 1)(4N + 1)

6
, σS =

√
N2(2N + 1)(4N + 1)(16N + 11)

180
(52)

Fd1(x) = Fd2(x) ∀x ∧ d1, d2 independent⇒ T ∈
N→∞

N(0, 1)⇒ (53)

p = 1− F−1
N(0,1)(T ) (54)

Basic assumptions (B): The noisevi has unknown correlation structure and distribution i.e. only the
basic assumptions (45) applies. Whendi(t) is not linear i.e. filtered white noise (4), correlation can not be
removed by linear whitening filtering which makes the decimation procedure (NC) a must. After decima-
tion the non-parametric method (W) can be used.

5 Non-linearity test procedures

At first glance your could expect that the three new methods SUP3, SUP5 and SIN can be combined with
all four variance test methods. It is however difficult to make use of the non-parametric methods for non
normal noise because of the necessary conditions (53) which the test is very sensitive to. The SUP methods
must be excluded because the distribution ofd1 andd2 are different ifvi is non normal. For the SIN method
the distribution ofd1 andd2 will be equal if the distribution ofvi are symmetric. This really only applies
asymptotically because of the effect of the estimated sinus. Further the SIN method gives uncorrelated but
dependentd1 andd2 for non normal noise and independence is the second conditions in (53). Fortunately
this dependence improves rather than spoils the performance of the SIN method. It is actually possible to
construct a SIN method using 4 sequences which complies with both conditions in (53) but its performance
is inferior to the 2 sequences SIN method and it is therefore not included. Also the SUP3 method will be
excluded from further analysis because it looses power in at least one case (57). This leaves the methods
in table 1 for simulation analysis.
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Method Variance test Description
method used

SR Suba-Rao method
SUP5 NW and NC 5 sequences superposition method for normal noise
SINN NW and NC SIN method for normal noise
SIN W and B SIN method for non normal symmetric noise

Table 1: Non linearity test method chosen for simulation analysis.

6 Statistical properties

Statistical tests can be compared by their power function i.e. the probability of rejectingH0 as a function
of the degree of violation ofH0 towardsH1. WhenH0 is true the power is also known as false alarm
probability and must be less or equal toα the level of significance and when everH1 is true the power, or
detection probability, should be as high as possible. The only safe conclusion from the theory is that the
power givenH0 and NW noise assumptions will equalα0 for the SUP5 and SINN methods. Below the
power is therefore estimated by simulation of different cases ofH0 andH1 combined with all the different
assumptions.

Examples and experimental conditions

Three examples will be considered for the deterministic part. A basic linear first order system (55) with gain
one,q−1 is the backshift operator. Next only the input part is made nonlinear to give a Hammerstein type
of nonlinearity (56) and finally the linear system is perturbed with a changing time constants depending on
whether the output increases or decreases (57) as e.g. with direction dependent friction.

yd(t) =
b

1 + aq−1
u(t− 1) , a = −0.9 , b = 1 + a (55)

yd(t) =
b

1 + aq−1
tan−1(ku(t− 1)) , k = 2 (56)

yd(t) = −a(t)yd(t− 1) + b(t)u(t− 1) ,

a(t) =

{
af = −(−a)kτ if yd(t) ≥ yd(t− 1)
as = −(−a)

1
kτ otherwise

, b(t) = 1 + a(t) , kτ = 1.25
(57)

The measured output follows (58) where there are six examples of noise from normal white (59) to non
normal and correlated (64). The MA(10) process (60) is chosen in favor of AR(1) processes to test the
robustness of the decimation method. The non normal cases (61)–(64) are with heavy tails as with “outliers”
and skewed in the two last cases. The scaling results in equal standard deviationσv at 0.1. For the heavy
tailed noise it was necessary to use a robustified LS [9, sec. 7.6] for estimating the sinus (35).

y(t) = yd(t) + v(t) (58)

v(t) = σe(t) , e(t) ∈ NID(0, 1) , σ = 0.1 (59)

v(t) = σw(t) , w(t) = M(q)e(t) , M(q) =
1 + q−1 + · · ·+ q−9

√
10

(60)

v(t) = σ sign(e(t))e(t)4κ1 , κ1 =
1√

7× 5× 3
(61)

v(t) = σ sign(w(t))w(t)4κ1 (62)

v(t) = σ(e(t)2 − 1)κ2 , κ2 =
1√
2

(63)
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v(t) = σ(w(t)2 − 1)κ2 (64)

As suggested in [1] the input for the SR method is a sinus with a level different from zero. The amplitude
and level are 0.5 to make it vary between 0 and 1 and thus give approximately 10% noise. The frequency
equals the bandwidth of the deterministic system (55). Input to the SUP5 method is a modified PRBS
signal [8, sec. 5.3] with the same level and RMS as the sinus and with a bandwidth as the system. The
input to SIN and SINN has zero level and an amplitude given the same RMS as above. The total number
of samples is set to 500 i.e.1× 500, 5× 100 and2× 250 for the SR, SUP5 and SIN methods respectively.
The level of the testα0 is set to the widely used 5% and the observed power can then be estimated as (65).
Further it is reasonable to have2σα̂ = 0.01 for the real power at 0.05 which is obtained with the number
of simulationsNs at 1900.

α̂ =
#{pi < 0.05}

Ns
(65)

Results

For every combination of deterministic systems and noise 1900 simulations of 500 samples are performed
i.e. 3 × 6 × 1900 = 34200 simulations in total. For every simulation of 500 samples all 7 p-values
corresponding to the methods in table 1 are calculated. Based on the 1900 p-values for each combination
of deterministic system, noise and method the power is estimated by (65) which adds up to3×6×7 = 126
estimated powers. The results are presented in separate bar plots for each deterministic system. In the plots
bars are grouped by method and noise process.

A carefull examination off all figures shows that the decimation procedure works very well. Only for
non linear systems and heavy tailed correlated noise (b1 (62)) does the sinus methods without decimation
perform better than the methods using decimation. In all other cases the methods using decimation are
superior to the corresponding methods without decimation. Consequently the decimation based methods
SUP5-NC, SINN-NC and SIN-B are in general preferable and we can consentrate on comparing these with
the SR method.

In figure 1 it is seen that the existing SR method only works for normal white noise and the powers which
in this case are false alarm probabilities are unacceptable high in all other cases especially the colored ones.
The SUP5-NC method is a little better as it works also for normal colored noise. The SINN-NC method
is perfectly reliable in all cases. The SIN-B method works for symmetrical distributed noise as expected.
The reason for the zero false alarm probabilities for SIN-B is the special dependence betweend1 andd2

arrising from heavy tailed noise, the full explanation is however to long and complicated to be included
here.

Figure 2–3 shows detection probabilities for methods having false alarms less than 0.1. For the Hammer-
stein sytem the SR and SUP5-NC methods are more powerfull than the SINN-NC and SIN-B methods.
The picture in figure 3 where the dynamical part is nonlinear is reversed in the sense that the SIN methods
are very good in contrast to the poor performence of the SR and SUP5-NC methods.

7 Conclusion

This paper discusses and developes preliminary statistical tests for detecting nonlinearities in the determin-
istic part of SISO systems with noise. The most referenced method is based on third order correlations.
It is shown to work for normal white noise but for other common noise processes e.g. colored, it is abso-
lutely unreliable. Therefore two new methods based on basic principles are developed. One is based on
superposition and the other on sinus input. They are much more robust, especially the sinus method whis
is reliable also for colored, heavy tailed or skew distributed noise. All though there are cases where the
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p1 p2 p3 p4 p5 p6 p7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Power of test when the system is linear

clu
cll
nw
nc
w1
b1
w2
b2

Figure 1:
False alarm probabilities i.e. estimated power (65) when the system is linear. The 7 groups of
bars corresponds to the methods in table 1. The 6 bars in each group corresponds to the noise
cases. Notice that the 4 bars which can not be seen are because the correspondingα̂ are zero.

p1 p2 p3 p4 p5 p6 p7
0

0.2

0.4

0.6

0.8

1
Power of test when the system is non linear of Hammerstein type

Figure 2:
Detection probabilities i.e. estimated power when the system is non linear of the Hammerstein
type (56). Bars corresponding tôα > 0.1 when the system is linear (figure 1) are omitted.
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p1 p2 p3 p4 p5 p6 p7
0

0.2

0.4

0.6

0.8

1
Power of test when the system is non linear of the last type

Figure 3:
Detection probabilities i.e. estimated power when the system is non linear of the last type (57).
Bars are omitted as in figure 2.

existing method has better detection capabilities compared to the new ones, an overall conclusions is that
the new methods are better and especially the sinus method is a good choise in practise.
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