Viscous Flow and Diffusion in Iron-Bearing Alkaline-Earth Silicate Glasses

Smedskjær, Morten Mattrup; Yue, Yuanzheng; Deubener, Joachim; Gunnlaugsson, Haraldur Páll

Publication date: 2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Many technological applications of glasses depend upon the properties of the surface. We have previously shown that reduction of iron or vanadium in silicate glasses by heat-treatment in H\textsubscript{2}/N\textsubscript{2} (1/99 v/v) near the glass transition temperature (T_g) requires an inward diffusion (from surface towards interior) of mobile cations, thereby creating a silica-rich surface layer. In this study, our aim is to determine the influence of the nature of the alkaline-earth ion on the above-mentioned diffusion process in SiO\textsubscript{2}-Na\textsubscript{2}O-Fe\textsubscript{2}O\textsubscript{3}-RO (R=Mg,Ca,Sr,Ba) glasses. We also investigate the link between the ionic diffusion and the fragility of the glass melt. The fragility of the glasses increases with increasing ionic radius of the alkaline-earth ion, whereas the T_g decreases. By heat-treating the glasses at their respective T_g, it is found that the Mg2+ ions are the fastest due to their small size, whereas the Ba2+ ions are the slowest. The activation energy of diffusion around T_g (E_d) of the alkaline-earth ions increases with increasing ionic radius, and hence, decreasing field strength. Consequently, E_d is found to be proportional to the fragility of the glass melt, i.e., a link between the activation energy of viscous flow at T_g (E_η) and E_d has been established. Hence, the results suggest that fragility (related to the flow of the glass network) can be used to predict the order of diffusion of fast ions in glasses.

Keywords: inward diffusion, fragility, reduction, surface