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Abstract-This paper proposes to use Bayesian inference of 
transition matrix when developing a discrete Markov model of a 
wind speed/power time series and 95% credible interval for the 
model verification. The Dirichlet distribution is used as a 
conjugate prior for the transition matrix. Three discrete Markov 
models are compared, i.e. the basic Markov model, the Bayesian 
Markov model and the birth-and-death Markov model. The 
proposed Bayesian Markov model shows the best accuracy in 
modeling the autocorrelation of the wind power time series. 

 

I. INTRODUCTION 

Wind farms with ever-increasing capacity are injecting 
wind power to the electrical grid worldwide, especially in 
countries such as Germany, Denmark, Spain, USA and China 
[1]. The energy strategy of the Danish Government by 2025 
indicates the possibility of building offshore wind farm with 
an overall capacity of 4600 MW, which approximately 
corresponds to 50% of Danish electricity consumption [2].  

In contrast to traditional power generation, wind power is 
highly fluctuating and not fully controllable. In power system 
modeling, for instance, for reliability analysis, a traditional 
power generation is usually modeled by the outage rate of 
each generator unit. However, this is not sufficient for 
modeling a wind farm, as wind power is a stochastic 
generation during normal operation [3]. In order to capture its 
stochastic behavior, both the autocorrelation and probability 
distribution of wind power generation should be taken into 
account.  

In the literature, there are two main types of wind 
speed/wind power models developed, i.e. autoregressive 
moving average (ARMA) models [4], [5] and Markov models 
[6]-[9]. In [4], an autoregressive (AR) model is applied to a 
transformed wind speed time series; while in [5], an ARMA 
model is directly applied. The discrete Markov model is 
mainly based on a transition matrix [6], [7]. The birth-and-
death Markov model developed in [8], [9] is a simplified 
Markov model, as it considers only transition rates among 
two adjacent states. 

An ARMA model usually requires fewer parameters than 
does a Markov model. However, it is discussed in [7] that 
although it provides a good modeling in autocorrelation, an 
ARMA model cannot guarantee a good fit in probability 
distribution. A discrete state-space Markov chain requires 
discretizing the original time series into n states. The number 

of parameter of a kth-order Markov model is nk(n-1), which 
increases exponentially as the order increases. Both types of 
models incorporate the aleatory uncertainty due to the use of 
random number generation. However, the uncertainty of 
model parameters, referred to as the epistemic uncertainty, is 
not considered. 

This paper uses a discrete Markov chain for the modeling 
of a wind power time series and takes into account the 
uncertainty of the transition matrix by using Bayesian 
inference. First of all, the theories of discrete Markov chain 
and Bayesian inference are presented. Secondly, the 
application of discrete Markov chain and Bayesian inference 
in modeling of wind power time series is discussed. 
Verification of the Markov model by using credible intervals 
is proposed. Finally, discrete Markov chain models are 
developed on the basis of hourly wind power data measured 
from the Nysted offshore wind farm in Denmark. The 
simulated time series from three different Markov models, i.e. 
the basic Markov model, the Bayesian Markov model and the 
birth-and-death Markov model, are compared with the 
measurement.  

II. METHODOLOGY 

A. Discrete Markov Chain 
A random walk is a simple example of a discrete Markov 

chain [10]. A discrete Markov chain describes random 
movement among a finite number of states. This paper only 
considers Markov chain on a finite number of states, i.e. 
s1,…, sn. The probability one moves to another state depends 
only on its current state, not on the previous states visited. 
Mathematically, it is expressed as 
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where the random process (Y0, Y1,…), with a n-state space 
S={s1,…, sn}, is said to be a Markov chain with transition 
matrix P. The transition matrix P consists of transition 
probabilities pij, which describe the probabilities of moving to 
state sj when in state si. A Markov chain is (time) 
homogeneous if pij does not change with time t, otherwise 
inhomogeneous. An n-state transition matrix P is expressed 
as 
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The first row in P provides the probabilities of moving to all 
states (state s1 to sn) from state s1; the second row provides 
the transition probabilities from state s2, and so on. The sum 
of the transition probabilities at each row is 1, i.e. 
 

n

1
1 for all 1, ..., n.ij

j
p i

=
= =∑           (3) 

 
A Markov chain is said to be irreducible, if it is possible to 

go from any state to any other state in one or more steps; it is 
said to be periodic, if the return to a particular state only 
happens at regular intervals, otherwise aperiodic. A Markov 
chain has an invariant distribution if it is irreducible and 
aperiodic. A probabilistic vector λ = (λ1, …, λn) with non-
negative entries is said to be an invariant distribution of P, if 
it satisfies: 

 
= .λP λ            (4) 

 
where Σλi = 1.The discrete Markov chain based on the model 
defined above is a 1st order Markov chain, namely, the 
probability one moves to another state depends only on its 
current state. The parameter number of a 1st order transition 
matrix is n2. The transition probability of a kth order Markov 
chain depends on the current state and its previous (k-1) 
states. For example, the transition matrix of a 2nd order 
Markov chain can be written as 

 
2 Tn ×n n×n n×n

1 n, ...,⎡ ⎤= ⎣ ⎦P P P          (5) 

 
where n×nP  is a 1st order transition matrix with n Markov 
state. The parameter number is n3 for a 2nd order transition 
matrix, and nk+1 for a kth order one. 
B. Birth-and-death Markov Chain 

Another Markov model based on the birth-and-death 
Markov chain is developed in [8], [9]. The model simplifies 
state transitions by defining transition rates between 
immediately adjacent states only. The residence time of state 
i, i.e. the time of staying at state i before going to a different 
state, is assumed exponentially distributed with the rate 
parameter equal to the transition rate divided by the length of 
the simulated time series. The generation of new time series 
states is directly determined by the random-generated 
residence time. The detailed procedure of the modeling is 
provided in [9]. 
C. Bayesian Inference 

The fundamental approach of Bayesian inference is to 
construct a joint probability model for both the observed 
quantities (the data) and the unobserved quantities (parameter 
values of distributions) [11], [12]. Assume y is the observed 

quantity which is a realization of a random variable Y, and 
that the distribution of Y depends on an unobserved quantity θ 
which is a realization of another random variable Θ. Assume 
that Θ is distributed according to π(θ), which is referred to as 
the prior density. Conditional on Θ = θ, assume that Y is 
distributed according to a known data density π(y|θ), which is 
referred to as the likelihood function or the data distribution. 
According to the definition of conditional probability, the 
joint distribution of Y and Θ has the density 

 
( ) ( ) ( ), |y yπ θ π θ π θ= .          (6) 

 
The prior density π(θ) reflects the prior knowledge or prior 
uncertainty regarding Θ before y is observed. The data 
distribution π(y|θ) is chosen such that it is consistent with the 
problem of interest. According to the definition of conditional 
probability, the conditional distribution of Θ given Y = y has 
the density 
 

( ) ( )
( )

( ) ( )
( ) ( ) ( ), |

| |
y y

y y
y y

π θ π θ π θ
π θ π θ π θ

π π
= = ∝ ,         (7) 

 
where π(θ|y) is the posterior density of Θ; π(y) is the 
normalizing constant; π(θ)π(y|θ) is the unnormalized posterior 
density.  

The posterior density π(θ|y) is the updated knowledge of 
the prior density π(θ). In other words, the prior uncertainty 
about the parameter Θ is reduced due to the observed data y. 
The Bayesian inference is based on the posterior density, 
which can be used, e.g., to predict the future observations.  

III. APPLICATION IN WIND POWER TIME SERIES 
MODELING 

This section first of all discusses a basic procedure of 
constructing a discrete Markov chain of a wind power time 
series. Then, the application of Bayesian inference on the 
transition matrix is presented. Another discrete Markov 
model, based on the birth-and-death Markov chain, is also 
briefly discussed. Finally, criteria of the model verification 
are provided. 

A. Maximum Likelihood Estimation of transition matrix 
The maximum likelihood estimation of the transition 

matrix P is obtained by maximizing the likelihood function or 
the data distribution π(y|P) given the observation y. In this 
case, the observation is 

 
( ): 1, ,N .ty y t= = …           (8) 

 
where N is the total length (number of hours) of the measured 
wind power time series. The data distribution is a multinomial 
distribution and expressed as 
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n n N
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where ‘ ∝ ’ indicates ‘proportional to’ and 
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It is noted that if the last observation yN = si, then Nii = Nii+1. 
This is to ensure that sum of all Nij equals to N. Therefore, the 
maximum likelihood estimation of transition probabilities are 
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In addition, the state probability, i.e. the probability mass 
function of the state value si is  
 

( ) N
s .

N
i

iπ =          (11) 

 
According to (4), the vector of state probability 
λ = [π(s1),…,π(sn)] is an invariant distribution of the transition 
matrix P. In other words, if the length of the simulated time 
series is long enough, the state probability of the simulated 
time series converges to that of the measured one. This 
property of the Markov chain ensures an accurate modeling 
of the probability distribution of a time series. 

B. Bayesian inference of transition matrix 
There are two uncertainties within the model, i.e. aleatory 

uncertainty from the random number generation, and 
epistemic uncertainty from the uncertainty of estimated 
transition probabilities. The latter one is not considered in the 
basic Markov model with maximum likelihood estimation. 
Unlike when using the maximum likelihood estimation, the 
Bayesian approach ensures aperiodicity and irreducibility. 
The following describes how to incorporate the uncertainty of 
transition matrix into the above Markov model. 

In a Bayesian approach, it is necessary to specify a prior 
distribution for the transition matrix P. Let Pi denote the ith 
row of P. Assume a prior that P1 , …, Pn are independently 
distributed, and that  

 
( )1 n, ,i ii dir α αP ∼ …         (12) 

 
where ( )1 n, ,i idir α α… denotes a Dirichlet distribution with 

parameters 1 2 n, ... 0i i iα α α > . Recall that the density of 
Dirichlet distribution is 
 

( ) ( )
n 1

1 n
1

1
, , ij

i i ij
j

dir p
B

αα α
α

−

=
= ∏…         (13) 

 
where pij is subjected to (3) and B(α) is a constant defined by 
a multinomial Beta function. Therefore, the prior distribution 
of P has the density 
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Equation (12) gives that 
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where E( ) is to take the expectation. In the following 
simulation, assume  
 

1 , for , 1, , n.
ij

i jα = = …        (16) 

 
This corresponds to each Pi being uniformly distributed on 
the simplex ( ){ }1 n, , : 1, 0i ix x x x= = ≥∑S … . In this case, 

E(pij) = 1/n. If we have prior knowledge from previous 
‘experiment’, we can incorporate this in the choice of the αij 
parameters of the prior.  

According to (7), with the data distribution as in (9) and 
prior distribution as in (14), the posterior distribution is now 
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That is, a posterior P1 , …, Pn given observations y are 
independently distributed with 
 

( )1 1 n n| N , ,N ,i i i ii y dir α α+ +P ∼ …         (18) 
 
Note that by construction the transition matrix is always 
irreducible and aperiodic. 

C. Model Verification 

1. Autocorrelation and cumulative distribution function 
In statistics, autocorrelation function (ACF) of time series 

(X0, X1,…) with time-lag d is defined as  

( ) ( )
2

Cov s , s
ACF .

t i t d j

X

X X
d

σ
+= =

=         (19) 

 
where Cov() is the covariance function; 2σX  is the variance of 
the time series. According to the definition of autocovariance 
function and based on the assumption of wide sense 
stationary (WSS) of the time series, the ACF of time-lag d 
can be further expressed by 
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where μX is the mean value of the time series, and 
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Therefore, the ACF of a transition matrix based Markov chain 
can be theoretically calculated given the state vector s, state 
probability vector λ, and transition matrix P.  

The ACF of a Markov chain can also be calculated using 
(19) with the simulated time series. However, this leads to 
different ACF values if different simulations are performed. 
This will be further illustrated in section IV. 

The cumulative distribution function (CDF) of the 
(discretized) time series can be obtained by 

 

( )
1

CDF s , for 1, , n.
j

j i
i

jλ
=

= =∑ …       (21) 

 
As explained in the end of section III A, the state 

probability vector λ is the invariant distribution of the 
transition matrix P. Namely. the state probability λi of the 
Markov chain converges to that of the original time series. 

2. Credible interval 
The credible interval [11] is a terminology used in 

Bayesian statistics. A 95% credible interval is the interval 
between the 2.5% and 97.5% percentiles of the posterior 
distribution of a random variable. An example of a 95% 
credible interval of random variable X is shown in Fig. 1.  
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Fig. 1.  95% credible interval of a random variable X. 

 
The reason to use a credible interval instead of a classical 

confidence interval is that a 95% credible interval can be 
directly interpreted as containing the true parameter with high 
probability, i.e. 0.95. Whereas after a 95% confidence 
interval is calculated, it either includes or excludes the true 
parameter and thus loses the meaning of 0.95 probability.  

IV. APPLICATION IN WIND POWER TIME SERIES 
MODELING 

The simulation is based on measured wind power data 
from the Nysted offshore wind farm connected to the 132 kV 
station at the Lolland-Falster distribution system in Denmark. 
The total capacity of the wind farm is 165.6 MW. It consists 
of 72 wind turbines, each with capacity of 2.3 MW. The data 
are measured every 15 min and range from January 1, 2005 to 
May 31, 2007. The measured 15-min data are averaged into 

hourly data to be used in the following simulation. The 
simulation results are discussed in terms of the 95% credible 
interval, Bayesian inference of transition matrix and 
comparison of different Markov models. If not stated, the 
number of Markov state is 10 and the length of the simulated 
Markov chain is 8760 hours. 

A. Simulation techniques 
First of all, the measured wind power time series needs to 

be discretized. Determine the number of states n and divide 
[0, Xmax] into (n-1) equally spaced intervals. Xmax is the 
maximum value of the measured wind power.  

For a Markov chain model, the state vector and transition 
probability should then be determined. The 1st state value s1 is 
0. The values of the remaining (n-1) states are chosen as the 
mean values of the data falling into corresponding intervals. 
Form the transition matrix P and calculate the corresponding 
cumulative transition matrix F, in which the element is 
defined by: 

1

j

ij im
m

f p
=

=∑          (22) 

 
Initialize the first state value of the wind power Markov 

chain X: Xt = 1 = si. Generate a uniform-distributed random 
number r. The next state value at t = t + 1 is determined by: 
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1 ( 1)
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i
t

q iq i q

s r f
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⎧ ≤⎪= ⎨ < ≤⎪⎩
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where i = q+1; q is an integer value within [1, n-1]. Repeat 
the step until t is equal to the defined length of the Markov 
chain. 

In this way, a wind power Markov chain is generated from 
a 1st order Markov model. For higher order Markov models, 
the procedure is the same but with a higher order transition 
matrix similar to (5).  

B. The 95% credible interval 

1. Simulation results 
Two different transition matrices are used for winter 

(October to April) and summer period (May to September) to 
account for the seasonality. Therefore, the Markov model is 
time-inhomogeneous. The ACF of wind power time series in 
winter from the measurement in 2005 and 2006 as well as 
two simulated ones are shown in Fig. 2. The 95% credible 
interval of the ACF is shown in Fig. 3. 

2. Discussion 
The two simulated wind power time series shown in Fig. 2 

are different from each other due to the aleatory uncertainty 
caused by the random number generation. However, it is 
difficult to judge the validity of the Markov model with 
individual time series. By using the credible interval, as 
shown in Fig. 3, it can be said that the ACF of the simulated 
time series is within the two solid curves for 95% of the time. 
In other words, if the 95% credible interval of ACF does not 
contain the ACF of the measured time series, it can be said 
that the model does not provide satisfactory results. The same 
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judgment applies to the CDF. The model is validated if the 
95% credible intervals of both the ACF and CDF contain 
corresponding measurement results. Although the data in both 
2005 and 2006 are used to build the Markov model, the 95% 
credible interval of ACF does not contain that of the 
measured time series in 2005 for the lag time between 3 and 
18 hours, as shown in Fig. 3. This is caused by the limited 
data set and the model is thus sensitive to the data set used. In 
order to account for the sensitivity of the model to the data 
set, the uncertainty of transition matrix should be included. 

C. Bayesian inference of transition matrix 

1. Simulation results 
The transition matrix is calculated based on the limited 

data set, the uncertainty of which is taken into account by 
using Bayesian inference to derive a probability distribution 
for each of the transition probabilities. For instance, the 
probabilistic density function (PDF) of the transition 
probability p11 by using Bayesian inference and the maximum 
likelihood estimation is shown in Fig. 4. The ACF and CDF 
of wind power time series in winter by Bayesian Markov 
model from the measurement in 2005 and 2006 as well as the 
95% credible interval are shown in Fig. 5. 
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Fig. 2.  ACF of wind power time series in winter: measurement in 2005 
(dotted), measurement in 2006 (dashed-dotted) and two simulations (solid) 
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Fig. 3.  ACF of wind power time series in winter by basic Markov model: 
measurement in 2005 (dotted), measurement in 2006 (dashed-dotted) and 
95% credible interval from simulation (solid) 
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Fig. 4.  PDF of transition probability p11 in winter by Bayesian inference 
(solid) and maximum likelihood estimation (dashed) 
 

2. Discussion 
The main difference between the Bayesian Markov model 

and the basic Markov model is that the former one includes 
the uncertainty of transition matrix while the latter one uses a 
fixed transition matrix obtained from the maximum 
likelihood estimation. With two types of uncertainties 
included, the aleatory uncertainty from the random number 
generation and the epistemic uncertainty from the Bayesian 

inference of transition matrix, the Bayesian Markov model 
provides superior results to the basic Markov model. As 
shown in Fig. 5, the 95% credible intervals of both the ACF 
and CDF contain corresponding measurement results in 2005 
and 2006. In this way, the 1st order Bayesian Markov model 
is validated against the measurement. 
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Fig. 5.  ACF (top) and CDF (bottom) of wind power time series in winter by 
Bayesian Markov model: measurement in 2005 (dotted), measurement in 
2006 (dashed-dotted) and 95% credible interval from simulation (solid) 
 

D. Comparison of different Markov models 
The considered types of Markov models are the basic 

Markov model, the Bayesian Markov model and the birth-
and-death Markov model. A comparison among the three 
types of Markov models, in terms of the core model, 
transition condition, parameter number and uncertainty 
considered, are summarized in Table I.  

The birth-and-death model can be considered a simplified 
model to the other two models in the sense that it considers 
only the transition to immediately adjacent states. In this 
regard, the results are expected to be worse than the basic 
model as shown in Fig. 6, although the simplification leads to 
a reduction in the parameter number of the model. It is worth 
pointing out that no matter which types of (1st order) Markov 
model used, the transition matrix or transition rate models the 
autocorrelation of lag 1. Autocorrelations of lags higher than 
1 are not directly modeled. However, as shown in Fig. 6, the 
simplification used in the birth-and-death Markov model 
leads to a constantly lower value of ACF at lag 1 as well. 

The Bayesian Markov model is essentially the same as the 
basic model but including the uncertainty of the transition 
matrix. In other words, the Bayesian Markov model improves 
the accuracy of the model without increasing the total 
parameter number. In the literature, in order to achieve a 
higher accuracy of the model, higher state and order number 
are usually the resort [7], [9]. The problem with higher state 
and order number is, as indicated in Table I, the dramatic 
increase of the parameter number to represent the model. 
Given a certain amount of data in total, the amount of data 
used to estimate each parameter decreases as n and k 
increases. As a result, the uncertainty of the parameter 
estimation increases. This is also one of the reasons why 
models with higher state and/or order number are not 
guaranteed to have a better performance as shown in [7]. 
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TABLE I 
COMPARISON OF MARKOV MODELS FOR WIND POWER TIME SERIES 

Type Core model Transition 
condition 

Parameter 
number 

Uncertainty 
considered 

Basic  Transition 
matrix 

To all states nk+1 Aleatory 

Bayesian Transition 
matrix 

To all states nk+1 Aleatory & 
Epistemic 

Birth & 
death 

Transition rate To adjacent 
states only 

(n-1)2k Aleatory 

n: state number; k: order of model 
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Fig. 6.  ACF of wind power time series in winter by birth-and-death Markov 
model: measurement in 2005 (dotted), measurement in 2006 (dashed-dotted) 
and 95% credible interval from simulation (solid) 

 

E. Application of wind power model 
The developed wind power model can generate time series 

of arbitrary length. The model can be incorporated into the 
reliability analysis of wind farms, e.g. to obtain a probability 
distribution of the expected generated wind energy (EGWE) 
index of a wind farm. The model can also be used in short-
range and long-range planning of power systems integrated 
with wind power. 

Although the model is illustrated by using wind power 
time series, it can be directly applied to wind speed time 
series modeling. The developed Markov model can be served 
as a potential candidate of the tool for wind power forecasting 
with a few hours ahead (e.g. 1 to 3 hours) when the numerical 
weather prediction is not available. The uncertainty of the 
forecasting can also be evaluated by the 95% credible 
interval. 

V. CONCLUSIONS AND FUTURE WORK 

This paper improves the existing discrete Markov model of 
a wind power time series by taking into account the parameter 
uncertainty, i.e. the uncertainty of transition matrix. The 
uncertainty of transition matrix is modeled through Bayesian 
inference. This paper also proposes to use credible interval to 
evaluate the accuracy of the model so that a fair judgment can 
be made from the statistical point of view regarding the 
validity of the model. A comparison among the basic Markov 
model, the Bayesian Markov model and the birth-and-death 
Markov model is made. From the point view of the 95% 
credible interval of ACF, the most accurate model is the 
Bayesian Markov model and the least accurate model is the 
birth-and-death Markov model. The seasonality of the wind 
power is accounted for by applying the model for summer 
and winter separately. The application of the wind power 
model in reliability analysis and power system planning are 
briefly discussed. Due to the variations of wind speed in 
different years, the year-to-year variation can also be included 
in the model if for instance ten-year data are available. 
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