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Regression Methods for Virtual Metrology of
Layer Thickness in Chemical Vapor Deposition

Hendrik Purwins, Bernd Barak, Ahmed Nagi, Reiner Engel,
Uwe Höckele, Andreas Kyek, Srikanth Cherla, Benjamin Lenz, Günter Pfeifer, Kurt Weinzierl

Abstract—The quality of wafer production in semiconduc-
tor manufacturing cannot always be monitored by a costly
physical measurement. Instead of measuring a quantity
directly, it can be predicted by a regression method (Virtual
Metrology). In this paper, a survey on regression methods
is given to predict average Silicon Nitride cap layer thick-
ness for the Plasma Enhanced Chemical Vapor Deposition
(PECVD) dual-layer metal passivation stack process. Process
and production equipment Fault Detection and Classification
(FDC) data are used as predictor variables. Various variable
sets are compared: one most predictive variable alone, the
3 most predictive variables, an expert selection, and full
set. The following regression methods are compared: Simple
Linear Regression, Multiple Linear Regression, Partial Least
Square Regression, and Ridge Linear Regression utilizing
the Partial Least Square Estimate algorithm, and Support
Vector Regression (SVR). On a test set, SVR outperforms the
other methods by a large margin, being more robust towards
changes in the production conditions. The method performs
better on high-dimensional multivariate input data than on
the most predictive variables alone. Process expert knowl-
edge used for a priori variable selection further enhances the
performance slightly. The results confirm earlier findings that
Virtual Metrology can benefit from the robustness of SVR,
an adaptive generic method that performs well even if no
process knowledge is applied. However, the integration of
process expertise into the method improves the performance
once more.

I. Introduction

In a fab, a plant that manufactures semiconductor
devices, starting with an uniformly doped bare sili-
con wafer, the fabrication of integrated circuits needs
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B. Barak, R. Engel, U. Höckele, A. Kyek, B. Lenz, G.

Pfeifer, K. Weinzierl are with Advanced Process Control,
Infineon Technologies AG, 93049 Regensburg, Germany,
bernd.barak,reiner.engel,uwe.hoeckele,

andreas.kyek, benjamin.lenz, guenter.pfeifer,

kurt.weinzierl1@infineon.com.
This work was supported in part by the European Union, ENIAC

project IMPROVE (Implementing Manufacturing science solutions to
increase equiPment pROductiVity and fab pErformance), Grant No.
120005 and the German BMBF (Federal Ministry of Education and
Research), Contract No. 13N10417. The work by H. P. was supported
in part by BMBF Grant No. Fkz 01GQ0850. c� 2011 IEEE

hundreds of sequential process steps which can be as-
sorted into 7 main process areas: lithography, etching,
deposition, chemical mechanical planarization, oxidation, ion
implantation and diffusion [1]. In this paper, we will focus
on the deposition step, where a multitude of layers of
different materials are deposited onto the production
wafers. In order to increase the efficiency of these pro-
cesses, an advanced fab is required to have online quality
monitoring tools. In current practice, process quality
is regularly monitored by the sampling of production
wafers. This approach assumes that the process quality
of production equipment does not change abruptly and
that the measurement result of the sampled wafers is a
good representative of the actual production quality [2].
This practice may not allow to timely detect equipment
process shifts and drifts happening between the sched-
uled measurements. As a consequence, the quality of the
produced wafers may degrade and the production cycle
time as well as the cost may increase.

In Virtual Metrology (VM), the quality of a wafer is
predicted based on process and production equipment
data, without physically conducting costly quality mea-
surements. [3] If VM predicts an abnormal equipment
state outside the specification limits, it could trigger a
stop of the production equipment. The VM can also be
used to compensate for minor shifts and drifts of the
process data, causing a reconfiguration of the control
parameter of the equipment through a Run-to-Run (R2R)
controller [4].

In the deposition steps, chemical vapor deposition
(CVD) is applied. CVD is a chemical reaction of a gas
mixture at the surface of the wafer is taking place
at high temperatures. In order to avoid the need of
high temperature, in Plasma Enhanced Chemical Vapor
Deposition (PECVD), the chemical reaction is enhanced
by means of electrical fields at radio frequency.[5] An
important aspect of this technique is the well defined and
reproducible composition and thickness of the deposited
film, achievable with reasonable effort by control of the
significant process parameters [1]. The PECVD metal
passivation process considered here comprises the primary
deposition of a Silicon Oxide (SiO2) base layer onto a
metal layer stack and the subsequent deposition of a
Silicon Nitride (Si3N4) cap layer (Fig. 1 and Fig. 2). We
will present approaches how the Si3N4 layer thickness
(target) can be predicted based on process and produc-
tion equipment data (predictor variables).
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Fig. 1. Metal Passivation Layer Structure: Silicon Nitride cap layer
and Silicon Oxide base layer, deposited in a PECVD process sequence
for passivation of the underlying metal layer stack.

Relevant previous work comprises [6], in which the
authors make use of the Monte Carlo simulation to
enhance the Design of Experiment (DoE) data sets, and
model the relation between the input variables and the
output variable using a back propagation neural net-
work. In [2], the authors propose to use a radial basis
function neural network to model the dependence of
the output variable on the input variable. However, the
models are derived using process parameter data from
real production equipment, instead of DoE data sets.
Comparing a multiple linear regression model (using
a stepwise procedure for selecting the input variables)
with a multi-layer perceptron neural network and a
radial basis function neural network is the focus of a
study carried out in [7]. The authors of [8] use the
multiple linear regression with stepwise selection in
order to determine a set of input variables, which are in
turn fed into a back propagation and a simple recurrent
neural network model to predict the output variable. In
[9] the data set is divided into an in-spec and an out-
of-spec data set, and the Classification And Regression
Tree (CART) is used to predict when a production wafer
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Fig. 2. Given FDC data, the VM predicts the Si3 N4 layer thickness.
These predictions are fed into the run-to-run controller, resulting in the
reconfiguration of the control variables of the PECVD equipment. The
predictions are also used by the monitoring process to possibly trigger
a production stop based on control limit violations. The processed
wafers are regularly sampled and subject to physical metrology. In that
case, the predictor is retrained and its hyperparameters and parameters
are updated.

will be inside or outside of the defined specification
limits. Cheng et al. [10] introduced an automatic VM
system including a retraining procedure for VM in CVD
for the adaptation to different process chambers on-line,
calculating reliance, data similarity, process, and metrol-
ogy data quality indices. Pampuri et al. [11] proposed
a hierarchical framework of contexts such as production
chambers and production processes, based on a multi-
level version of the LASSO, a regularized version of
the least squares problem. Schirru et al. [12] compared
regularized entropy learning with kernel ridge regres-
sion for the prediction of Silicon Nitride (Si3N4) Layer
Thickness also predicting probabilistic uncertainty. For
two unspecified etching processes, in [13], variable se-
lection and dimension reduction is used in conjunction
with regression (linear and k-nearest neighbor regres-
sion, regression trees, neural networks and SVR [14]).
On a data set spanning 3 months of production, they
got the best results with a wrapper feature selection
(stepwise linear regression or genetic algorithm with
SVR) combined with SVR as a predictor, thereby risking
overfitting the data, since all target labels are used twice:
by the wrapper algorithm to select the features, and in
the end again for evaluation.

As an extension of [15], the present paper adds a com-
parison of SVR to methods based on linear regression
and is structured as follows: In Sec. II, we outline the
physical metrology. Sec. III gives an introduction to the
applied regression methods, followed by a description of
the performed regression hyperparameter optimization
via cross validation and grid search. In Sec. IV, we
explain the data preprocessing and assess the prediction
error for the different methods separately on training
and test data set. Finally, the conclusions are summa-
rized in Sec. V.

II. Optical Layer Thickness Measurement

The thickness of the Silicon Nitride layer can be opti-
cally measured (physical metrology). In current practice,
this expensive procedure is performed on a relatively
large number of sampled wafers. To reduce these ex-
penses and to continuously monitor wafer quality, it is
desirable to predict this layer thickness via VM instead
of actually measuring it. To build such a predictor we
need to train a regression algorithm with a set of actual
physical measurements.

For each sampled wafer, the Silicon Nitride layer thick-
ness is individually measured at several measurement
points evenly distributed over the wafer. As an indicator
for the quality of each measurement result the Goodness
of Fit (GoF) is used. The mean calculated from these
measurements is the average thickness of the Silicon
Nitride cap layer. For the considered range of deposited
layer thickness, the relative accuracy of the optical mea-
surement is significantly better than 0.024 %. Based on
this measured layer thickness the deposition time for the
next lot of wafers of the same design type is calculated
by a R2R controller in closed loop mode.
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III. Statistical Methods

Let xi = (xi1, xi2, . . . , xid)
0 2 Rd(i = 1, · · · , n) be

the n d�dimensional predictor variables, e.g. consisting
of FDC sensor and context variables contained in the
historical data set. Let y = (y1, y2, . . . , yn)0 2 Rn be
the measured variables, in our case the averaged Si3N4
layer thickness assessed by an optical measurement. We
present methods to make a prediction (virtual mea-
surement) ŷ based on an actual FDC variable input
vector z 2 Rd. Some parameters such as the regres-
sion coefficients w of these methods can be learned
from the historical data set, using the training algorithms
discussed in Sec. III-A. Other configuration parameters
(hyperparameters) of the methods can be optimized by
systematically evaluating the performance on a set of
hyperparameter combinations (grid search, Sec. III-B).

A. Regression
1) Multiple Linear Regression (MLR): Let

yi = b + w1xi1 + w2xi2 . . . wdxid + ni = b + w0xi| {z }
ŷ

+ni (1)

for intercept term b and coefficients w = (w1, . . . , wd)
0,

prediction ŷ and noise term ni. In Ordinary Least
Square Estimate, we minimize the empirical risk:
arg minb,w Ân

i=1 l(yi, ŷi), with the quadratic loss function
(the squared error)

l(yi, ŷi) = (yi � (b + w0xi))
2. (2)

Let X = (x1 � x̄, . . . , xn � x̄)0, y = (y1 � ȳ, . . . , yn � ȳ)0
with sample means x̄ and ȳ. Then the coefficient param-
eters can be estimated by the following expression:

ŵ = (X0X)�1X0y. (3)

The intercept is estimated by b̄ = ȳ � ŵ0x̄.
A new data point z 2 Rd is centerized yielding an

estimated measurement

ŷ = b̄ + ŵ0(z � x̄). (4)

2) Simple Linear Regression (SLR): This method chooses
the component from predictor variable x that gives the
lowest squared error and performs regression only with
this single variable (d = 1 in Eqn. 1).

3) Ridge Linear Regression: When the columns of X
have an approximate linear dependence, the matrix X0X
becomes close to singular. Ridge Regression [16] addresses
this problem of multicollinearity by solving the following
expression instead of the one in Eqn. 3:

ŵ = (X0X + rI)�1X0y, (5)

where the ridge parameter r is a hyperparameter and I
is the identity matrix. Small positive values of r improve
the conditioning of the problem and reduce the variance
of the estimates. In Sec. IV, Ridge Linear Regression
will be used after previous partial least squares filtering
(RLR, cf. Sec. III-A4,[17]).

4) Partial Least Squares (PLS) Estimate: For high-
dimensional predictor variables x1, . . . , xn 2 Rd, it can
be desirable to reduce the dimension d. In PLS, new
latent variables, so-called scores ti, . . . , tg (g < d), are
constructed, exploiting correlations between the predic-
tor variables and between the predictor variables and
the measured variables y. Thereby, the dimension of the
input space is reduced, while at the same time a minimal
amount of relevant information is lost.

According to [17], the PLS1 algorithm consists of the
following steps:

1) Initialize j = 1, X1 = X, y1 = y.
2) Calculate component vj, pointing at the direction

of the largest co-variance between Xj and yj :

vj =
X0

jyj

kX0
jyjk

. (6)

3) Calculate the scores:

tj = Xjvj. (7)

4) Do linear regression of the measurements yj on
the score tj, yielding the regression coefficient ĉj =
t0jyj/t0jtj.

5) Perform linear regression of Xj on tj, resulting in
the coefficient vector p̂j = X0

jtj/t0jtj.
6) Get residuals after the regression:

Xj+1 = Xj � p̂jt0j (8)
yj+1 = yj � ĉjtj. (9)

7) Stop if j = g, otherwise let j = j + 1 and return to
Step 2.

The algorithm yields the components V = (v1, . . . , vg),
the scores T = (tij) 1in

1jg
= (t1, . . . , tg), and the co-

efficients ĉ = (ĉ1, . . . , ĉg) and P̂ = (p̂1, . . . , p̂g). The
orthogonality of the columns tj of matrix T ensures that
the multiple regression of yj on T can be done one
column tj at a time (Step 4,[17]). The centered predictor
variables xi � x̄ can then be approximated as the linear
combinations P̂(ti1, . . . , tig)

0 with noise term ni 2 Rd :

xi � x̄ = P̂(ti1, . . . , tig)
0 + ni. (10)

Analogously, the measurements y can be decomposed in
terms of coefficients ĉ with noise term ni:

yi = ĉ(ti1, . . . , tig)
0 + ni. (11)

For the prediction ŷ of the measurements, the variable
vector z is centerized (Equation 4) and its score t⇤ =
(t1, . . . , tg)0 is recalculated iterating Equations 6 and 7 g
times [17], yielding

ŷ = ȳ + ĉt⇤, (12)

for sample average ȳ. g is a hyperparameter to be
optimized.

PLS can be considered as a method based on model
order selection and dimension reduction and might be
used as an alternative to the expert selection of variables
described in Sec. IV-A4.
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5) Support Vector Machine Regression (SVR [14]): Gen-
eralizing Eqn. 1, a (non-linear) transformation j is intro-
duced into the regression equation:

yi = b + w0
j(xi) + ni = ŷi + ni. (13)

To estimate b, w, we minimize Ân
i=1 l(yi, ŷi). Instead of

the quadratic loss (Eqn. 2) we use the #-insensitive loss
function:

l(yi, ŷi) =

⇢
0 i f |yi � ŷi|  #,

|yi � ŷi|� # else. (14)

Thereby, data points within an #-tube around the estimate
ŷi are not considered for constructing the predictor.

Slack variables are defined:

xi := min(yi � ŷi � #, 0) (15)
x

⇤
i := min(�yi + ŷi � #, 0). (16)

In SVR, the aim is to find the coefficients w to mini-
mize

1
2
kwk2 + C

 
n

Â
i=1

xi +
n

Â
i=1

x

⇤
i

!
(17)

under the constraints:

yi � w0
j(xi) + b  # + xi,

w0
j(xi)� b � yi  # + x

⇤
i ,

xi, x

⇤
i � 0.

C trades off the flatness of ŷ versus the prediction
error. This optimization problem is solved via the dual
maximization problem [14]:

L = �1
2

n

Â
i,j=1

(ai � a

⇤
i ) (aj � a

⇤
j )j(xi)

0
j(xj) (18)

�#

n

Â
i=1

(ai + a

⇤
i ) +

n

Â
i=1

yi (ai � a

⇤
i ) (19)

under the conditions: 0 = Ân
i=1
�
ai � a

⇤
i
�

, 0  ai, a

⇤
i 

C. We yield ŷ = Ân
i=1
�
ai � a

⇤
i
�

j(xi)
0
j(x) + b. In this

equation, j only occurs pairwise. Such a pair can be
substituted by a kernel function, typically a (Gaussian)
Radial Basis Function (RBF) with flatness hyperparame-
ter g:

j(xi)
0
j(x) = k(xi, x) = e�gkxi�xk2

. (20)

The SVR has three hyperparameters to be optimized:
g, e, and C.

B. Hyperparameter Optimization by Grid Search
The previous section provided algorithms that learn

the regression coefficients w and c from the training
data. However, some regression methods are further
specified by additional hyperparameters, some of which
are set based on a priori experience. Others are sys-
tematically optimized, using the grid search procedure

explained in the sequel. Whereas MLR and SLR do
not have any hyperparameters, RLR has the hyper-
parameters r (ridge parameter) and g (number of com-
ponents for PLS). From s values for r, equally spaced
on the logarithmic scale, and t equally spaced values
for g, the cross product (grid) of all s · t combinations
of (r, g) pairs is built, i.e. the grid created by r =
10�10, 10�9, 10�8, . . . , 105 and g = 1, 2, 3, . . . , b 2·d

3 c, d be-
ing the dimension of the predictor variable vector x. The
data is divided into a training subset and an evaluation
subset. On the training subset, for each combination
of r and g, the 2-fold Cross Validation (CV,[18]) Root
Mean Square Error (RMSE) is calculated, measuring
the deviation of the predicted from the measured layer
thickness. Around the combination with minimal RMSE,
a smaller 3 · 3 grid of r · g combinations is evaluated with
10-fold CV RMSE. If the grid point with minimal RMSE
lies on the border, another 3 · 3 grid is centered around
there. If necessary, this is iterated up to 3 grid exten-
sions, yielding an optimal hyperparameter combination.
This procedure is performed for 10 training/evaluation
partitions (10-fold CV) and repeated 5 times with dif-
ferent randomization of the order of the data. The best
hyperparameter combination is the one that occurs most
often across different data randomizations. The latter is
then used for the prediction (ŷ) on the test set (points z),
for which the average RMSE and the standard deviation
(std) are calculated.

The optimal g for RLR is also used for PLS. For SVR
e = 0.1 in Eqn. 14 is empirically chosen and the grid is
spanned by C = 10�1, 10�0.5, 100, . . . 103 (in Eqn. 17) and
g = 10�3, 10�2.5, 100, . . . 102 (in Eqn. 20). The WEKA [19]
toolkit is used for implementation.

IV. Results

In order to find the best VM method to predict the
Si3N4 layer thickness based on sensor and context vari-
ables, the regression methods from Sec. III with different
parameterizations are compared through validation and
evaluation on a historical data set recorded from the pro-
duction (Sec. I) and the metrology equipment (Sec. II).
The historical data set is split into two portions. The
first portion of sensor and context variables consists of
450 variable instances (wafers) recorded over a period
of 9 months and is preprocessed (Sec. IV-A) yielding a
training set on which various (parameter) settings for the
regression methods are compared (Sec. IV-B1). The best
settings are then applied to a test set (Sec. IV-B2) from
the second portion of the historical data set, recorded
during a period of 5 months, starting 5 months after the
last variable instance of the training set.

A. Data Preprocessing
First, from more than 150 FDC context and sensor

variables in the historical data set, the CVD experts
selected a variable subset according to its relevance for
the Si3N4 metal passivation step considered here. In
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addition, only wafers for a particular product technol-
ogy type were chosen. Further variables are removed
if statistically irrelevant (Sec. IV-A1). Wafer instances
with missing or inconsistent variable values or outside
certain specified limits are discarded. In Sec. IV-A2,
it is investigated, whether the two remaining context
variables, the basic (wafer) design type, and the process
chamber have a statistically significant impact on the
Si3N4 thickness, using ANalysis Of VAriance (ANOVA).
Based on the latter analysis, instances are only kept if
their combination of context variables occurs frequently
enough to be used for statistical inference (Sec. IV-A3).
From the remaining variable subset with 41 variables, the
experts selected two further variable subsets containing
17 and 3 variables, used to compare the performance of
the different regression algorithms. (Sec. IV-A4)

1) Statistical Filtering: After the initial expert variable
preselection, variables and wafer instances are further
reduced according to the following sequence of filtering
rules:

1) Removal of variables with entirely or predomi-
nantly missing values,

2) Removal of variables with constant values,
3) Removal of context variables being redundant or

without process relevance,
4) Removal of instances with missing variable values,
5) Removal of instances with particular variable (mean

GoF, minimum GoF, data gap count) values outside
specified limits (cf. Sec. II),

6) Removal of the variables used for threshold filter-
ing in the previous step,

7) Removal of instances with inconsistent variable
values.

The resulting FDC data set used for training comprises
414 instances and two context variables: a) the basic
design type, characterizing the physical properties of the
wafer and b) the process chamber index, indicating in
which of the three process chambers of the recorded
PECVD equipment the wafer has been processed.

2) ANOVA of Context Variables: We utilize the one-way
ANOVA to assess whether the measured average Si3N4
layer thickness has the same mean for wafer groups of
different context variables, i.e. basic design type and pro-
cess chamber. This indicates, whether the bias (intercept)
term for regression modeling has to depend on these
context variables.

a) Bias by Basic Design Type: For the 5 most fre-
quent basic design types, ANOVA returns a p-value of
2.8 · 10�10, indicating that the average Si3N4 thickness
corresponding to the different basic design types do not
have a common mean. Thus, the bias term b in the
regression model (Eqn. 1), has to depend on the basic
design type of the processed wafer.

b) Bias by Process Chamber: ANOVA for 3 process
chambers results in a even higher p-value than for the ba-
sic design types, i.e. the probability of the null hypothesis
to be 2.4 · 10�12. Therefore, we build separate regression
models for each chamber, taking also into account that

Statistical Process Control (SPC) in the manufacturing
line is performed specifically for each process chamber.

3) Selecting Frequent Context: To exemplify this ap-
proach, in our study we only consider wafer instances
from the process chamber with maximum number of
instances. In order to base prediction modeling on an
overall statistically significant number of wafer instances,
only basic design types with an occurrence of more than
7 instances in the FDC data set are considered i.e. 5
different basic design types with a frequency ranging
from 8 to 30. Thus, the number of remaining instances
available for statistical analysis totals to 98. Subsequently,
two more variables are removed that are constant across
the reduced set of remaining instances. In order to utilize
the remaining context variable basic design type as a
numerical predictor variable, the nominal variable basic
design type is converted into a 5-dimensional binary vec-
tor, indicating which of the 5 basic design types occures.
Additionally, the values of all parameters in the FDC
data set are mapped to the range [0, 1].

4) Compared Variable Sets: Finally, 41 normalized pre-
dictor variables are available for application of the dif-
ferent regression methods. We will call this variable set
filtered full variable set (FF). It will be compared with
other variable sets. From FF, CVD process experts again
selected a subset of variables, using more strict criteria,
resulting in a variable set called expert selected FDC
variable set (ES). It consists of 17 sensor variables and
the context basic design type (Table I). From this set, the
FDC experts finally selected the three most important
variables: The recipe set point for wafer deposition time from
R2R-controller, the temperature of processed wafer (mean), as
well as the context basic design type of processed wafer, thus
defining the TTB variable set.

TABLE I
Expert Selected (ES) variable set and Si3 N4 target, including

forwarded and reflected Radio Frequency (RF) power, with

relative std (std divided by mean): (cf. Grill [5]).

Predictor Variables Relative Std
Basic design type of processed wafer (5 binary ind.)
Process chamber pressure (M,Std) 0.0213/0.1818

Process chamber pressure control valve position (M,Std) 0.0093/0.1758

Nitrogen (N2) gas flow into proc. chamber (M,Std) 0.0002/0.1667

Monosilan (SiH4) gas flow into proc. chamber (M,Std) 0.0002/0.0959

RF-power forw. into process chamber > limit (M,Std) 0.0148/0.1967

RF-power refl. from process chamber > limit (M,Std) 0.0745/0.2491

Norm. dev. of refl. RF-power (M) from batch median 3.0394

Temperature of processed wafer (Std,M) 0.0005/0.0904

Recipe set point wafer deposition time from R2R-ctrl. 0.0055

Count processed wafers since proc. chamber wet clean 0.1617

Target: Silicon Nitride layer thickness (M) 0.0087

M: Mean / Std: Standard Deviation

5) Test Set: Filtered in the same way as the training set,
the test set contains 39 instances for the same variable
sets (FF, ES, TTB).

B. Prediction Results
For the training set and the three variable sets (TTB,

ES, FF), different regression algorithms and their hy-
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perparameter settings are evaluated (Sec. IV-B1). This
yields the best performing variable set and the optimized
hyperparameters for each regression method. These set-
tings are then applied to the test set (Sec. IV-B2). In
comparison to the validation error on the training set, the
test error is a more reliable estimate of the performance of
the VM algorithms in terms of future productive online
application. [18]

1) Cross Validation Training Error: On the training set,
the 10-fold cross validation (CV) performance over 5 ran-
domizations of the data partitioning is averaged for the
five methods, SLR, MLR, PLR, RLR, and SVR, using the
TTB, ES, and FF variable sets (Table II). The performance
is evaluated using the average relative RMSE being the
average RMSE divided by the standard deviation (std) of
the target variable (Si3Ni4 layer thickness). The relative
std is the RMSE std across the 5 randomizations divided
by the std of the Silicon Nitride layer thickness. As a
reference, we also indicate the relative unconditional VM
accuracy limit based on the process tolerance specification
for the considered product technology type divided by
the target Silicon Nitride layer thickness.

a) Prediction on the Single Most Predictive Variable:
SLR determines the most predictive variable, i.e. in our
data set the wafer deposition time, and predicts the layer
thickness based on that variable. The CV relative RMSE
is more then twice as high as for the other methods
and variable sets, except for MLR-TTB, indicating that
a univariate linear regression model is suboptimal for
predicting the layer thickness.

b) Prediction on Deposition Time, Temperature and Basic
Design Type: Adding the variable wafer temperature and
the context variable basic design type to the deposition time
(TTB) using PLR, RLR, or SVR let the prediction error
decrease dramatically. PLR performs only 1.5 % better
than RLR with the relative std being 0.4 % or 1.0 % for
the respective algorithm. The average RMSE for MLR is
almost 4 times as high as for PLR and RLR. In this case,
the performance depends strongly on the randomization
of the training/test partitions, indicated by a relative std
of 2.54. The results of MLR without collinearity analysis
and feature selection are very sensitive to different ran-
domizations of the data set, and give a highly unstable
predictor. An informal comparison indicates that MLR
with a variety of methods for feature selection and for
elimination of collinear attributes performs in the same
order as PLR and RLR. On the TTB variable set, SVR
performs slightly better than the other methods.

c) Prediction on Expert Selected Variable Set: On the
expert selected variable set (ES), PLR and RLR perform
best and almost equally well with an average relative
RMSE of 0.322 (std: 1.0 %) and 0.323 (std: 1.2 %) respec-
tively. Compared to the TTB results, the performance of
PLR on ES is improved by 18 %. For SVR, the RMSE is
a bit higher than for PLR/RLR. On the ES variable set,
MLR performs worst by a small margin.

d) Prediction on Filtered Full Variable Set: PLR is
only 0.3 % better than RLR. With respect to the results

TABLE II
Training Set Prediction of Average PECVD Silicon Nitride

Layer Thickness with SLR, MLR, PLR, RLR, SVR Based on the TTB,
ES and FF Variable Sets. Average Relative CV RMSE and

Relative Standard Deviation are Given over 5 Randomizations

and 10-fold Cross Validation.

Variable Set Method CV Rel. RMSE Rel. Std
Deposition Time SLR 0.895 0.019

TTB MLR 1.524 2.540

PLR 0.391 0.004

RLR 0.397 0.010

SVR 0.374 0.004

ES MLR 0.348 0.014

PLR 0.322 0.010

RLR 0.323 0.012

SVR 0.339 0.013

FF PLR 0.371 0.009

RLR 0.372 0.013

SVR 0.344 0.010

Uncond. VM Acc. Limit 0.507

obtained for the ES variable set, the RMSE performance
of RLR as well as PLR is degraded by 15 %, but is
still slightly better (5-6 %) than the results for the TTB
variable set. MLR is not applied to the FF variable set
since the related computational effort is not feasible.
However on FF, SVR performs best, almost as good as
on ES.

PLR/RLR on ES gives the best performance on the
training set for all combinations of algorithms and vari-
able sets considered in this paper.

TABLE III
Test Set Prediction Based on the ES Variable Set. SLR selects

deposition time as the only variable used for regression.

Method Relative RMSE
SLR 1.000

MLR 1.894

PLR 0.759

RLR 0.749

SVR 0.432

2) Prediction on Test Set:
a) Expert Selected Variable Set: As it performed best

for the training set, we choose the ES variable set for
the prediction on the test set. The RMSE performance
of the 5 algorithms (SLR, MLR, PLR, RLR, and SVR)
is compared. For PLR, RLR, and SVR, the optimal hy-
perparameter combinations have to be determined. We
chose the hyperparameter combinations that performed
best in the 10 fold cross validation on the training set
in the majority of the 5 data randomizations. Using
these hyperparameters, the algorithms are trained on
the training set. The trained models are then applied to
predict the average Silicon Nitride layer thickness on the
test set.

In Table III, for the different algorithms, the relative
RMSE for the test set prediction based on the ES vari-
able set is shown. The performance on the test set is
significantly different from the one on the training set.
In contrast to the training error, the best method on the
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ES test set is SVR with a relative RMSE of 0.432, which
is only 27% worse than the SVR training error. On the
test set, SVR outperforms the other methods by a large
margin. The test error of the second best method RLR
is 73 % higher than the one of SVR and 132% worse
than the RLR training error. For the other methods the
increase of the test error with respect to the one of SVR is
even higher: 76 % (PLR), 131 % (SLR), and 338 % (MLR).

In Fig. 3, we can inspect the behavior of the predictors
during the time course of the 39 data points of the test
set in more detail.

The physically measured layer thickness is indicated
by a solid black line. The upper and lower tolerance
limits (UTL/LTL indicated by the red dashed lines)
determine the relative unconditional VM accuracy limit.

In Fig. 3 a), the prediction based on SLR does not
follow the fluctuations of the actual measurement in
the beginning of the test data set. Towards the end of
the test data, SLR overestimates the measurement. MLR-
based prediction follows more or less the general contour
of the measurement up to Instance No. 29 of the test
data, from which on MLR radically underestimates the
layer thickness, however still echoing the shape of the
measurement curve, but with a large offset.

An inspection of the test data set reveals that just
before Instance No. 29 a yearly maintenance of the
considered process chamber took place. In addition, it
can be noted that during the time period from which
the training data was sampled and the time period of
5 months between training and test set, no maintenance
action including a chamber wet clean was performed.
In the test set, the FDC variable count of processed wafers
since last chamber wet clean in the ES variable set (cf. Table
I) is far above (before Instance No. 29 ) and below (after
Instance No. 29) its range within the training set. It can
be observed that SLR as well as MLR are very sensitive
to this variable out of training-set-range condition.

Fig. 3 b) shows the prediction of PLR, RLR and SVR.
PLR and RLR give almost identical results and predict
clearly better than MLR. Up to Instance No. 15, the
prediction is very close to the actual measurement. From
Instance No. 16 to 28 PLR/RLR always overestimate
the layer thickness mostly by a large offset. As for
MLR, this tendency is reversed from Instances No. 29

to No. 38, resulting in an underestimation by a large
offset. The behavior of the SVR predictor is qualitatively
different. The prediction errors of SVR are more evenly
distributed across the time course of the test data, and
thus significantly smaller than for the other predictors
for the last third of variable instances.

V. Conclusion

Although for cross validation on the training set
PLR/RLR perform slightly better than SVR, on the test
set, SVR outperforms all linear-regression based meth-
ods by a large margin. This supports the conjecture that
all investigated linear-regression based methods overfit

to the training set (e.g. to particular parameter settings)
whereas on our test set, SVR seems to generalize better
to conditions not explicitly present in the training set.
PLR and RLR perform with no significant difference, but
clearly better than the unstable MLR. That indicates that
previous dimension reduction by PLSE improves linear
regression, whereas usage of the additional ridge param-
eter does not improve the prediction perceivably. The
univariate SLR is inferior to the multivariate methods
PLR/RLR and SVR. These findings converge with [13],
where SVR and Linear Regression in conjunction with
previous dimension reduction perform best for VM in
an etching process.

Generalizability of the model is particularly chal-
lenged if variable values are encountered that are out
of the variable range in the training set. This requires
extrapolation of the model and can lead to bad perfor-
mance. It would be advisable to check if the sensor vari-
ables exceed the variable range present in the training
set. If yes, this particular variable could be removed from
the data set. However, a sufficiently large data set used
for training should minimize the likelihood of such a
situation.

The expert selected variable set gives the best perfor-
mance, better than the full variable set, the best single
variable (deposition time), or the best three variables (de-
position time, basic design type, wafer temperature).

In conclusion, our results indicate that VM can benefit
from the usage of robust statistical methods combined
with comprehensive process expert knowledge in terms
of appropriate selection of the predictor variables.

In future work, a couple of aspects should be inves-
tigated. The prediction problem is complicated, because
the most predictive variable (deposition time) is recalcu-
lated by the closed loop Run-to-Run controller; associ-
ated predictor variables contain offsets due to mainte-
nance actions, manual adjustments related to Statistical
Process Control (SPC) or self-regulation of the equip-
ment, without correlated changes of the deposited layer
thickness. When the usage of VM is intended to serve as
an input to Run-to-Run control, the mean squared error
is an appropriate evaluation measure. For the purpose
of only monitoring the quality of the deposition process
with respect to the layer thickness, an alternative would
be to formulate a classification problem, distinguishing
between three types of behavior: above/within/below
specified limits. Physical models have to be designed
individually for each new process. On the contrary, the
statistical model proposed here does not require deep
knowledge about the physical nature of the modeled
process. However, to reach high reliability, sufficient data
is needed. If this is not the case, the incorporation of
some physical process knowledge into the statistical
model can compensate to some extent for the lack of
data. In order to not rely on process experts to select
the predictor variables, methods of automated feature
selection [13] will be further investigated. Method can-
didates include the so-called filters that rank individual
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(a) (b)

Fig. 3. Prediction of Silicon Nitride layer thickness on the ES test set, using (a) SLR and MLR, and (b) PLR, RLR, and SVR. The layer thickness
measured by optical metrology equipment is indicated by a solid black line. The upper and lower tolerance limits (UTL/LTL) indicated by the
red dashed lines determine the relative unconditional VM accuracy limit. The training set is used to optimize the hyperparameters and to train
the model. The trained models are then applied to the test set. For the first half of the instances of the test data set for MLR, PLR, and RLR, the
performance is relatively good whereas it significantly degrades from instance No. 29 onwards, which is the first recorded sensor data vector
after a yearly maintenance action including wetclean of the process chamber. In contrast to SLR, MLR, PLR, and RLR, the prediction based on
SVR follows the actual measurements quite closely and the errors are more equally distributed over the time course of the test data.

sensor variables or subsets thereof independently from
the regression method. To achieve this, correlation or
mutual information can be employed to detect depen-
dencies between the variables. An alternative approach
are wrappers using a regression method, e.g. SVR, to
evaluate (subsets of) features. For the latter type of
methods, only a relatively small portion of the large
number of possible variable combinations should be
used for validation to avoid over-fitting. [20]
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