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Abstract

Based on fundamental +ow equations describing mass balance, energy conservation and momentum, a consistent solution is derived
for natural ventilation by thermal buoyancy in a room with two openings and with uniform temperature.

The solution is a reliable tool for analysing and designing natural ventilation systems where thermal buoyancy is the dominating driving
force.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In literature, di1erent models are used for explaining the
mechanism of natural ventilation by thermal buoyancy. In
the earliest literature a column or a fan model is used. In
the column model, the driving force is assumed to be the
thermal buoyancy on a column of warm air immersed in
colder surrounding air. The column has a height equal to the
vertical distance between inlet and outlet and a cross-section
equal to the opening area of the outlet (cf. e.g. [1]). The fan
model assumes the same driving force as the column model,
and this force creates the air movement in the openings and
overcomes the friction losses.
In recent literature a third model, the pressure model,

is commonly used. It is based on the indoor and outdoor
barometric pressure distributions and it introduces the neu-
tral plane, which is the level where indoor and outdoor
pressure are equal. The position of this level is determined
by using a mass balance equation with velocities deter-
mined by the Bernoulli equation (cf. e.g. [2]). In the lat-
est literature, “emptying–7lling box models” are introduced.
They are based on the pressure model, but include tempera-
ture strati7cation considerations known from displacement
ventilation (cf. e.g. [3]).

∗ Tel.: +45-45-7423-88.
E-mail address: kta@dbur.dk (K.T. Andersen).

The above-mentioned models are not or only partly based
on fundamental +ow equations. Various intuitive interven-
tions or tricks are performed to establish the air+ow. Dif-
ferent calculation results occur dependent on which model
is used and how it is used, and this creates uncertainties
of analysis and design of natural ventilation systems (cf.
e.g. [3,4]).
The purpose of this paper is to set up a consistent the-

ory for natural ventilation by thermal buoyancy using the
fundamental +ow equations. Only the simplest case will be
considered in this paper. It is a room with two openings
placed at two di1erent vertical levels, with uniform indoor
temperature and with steady-state conditions.

2. Fundamental �ow equations

It is assumed beforehand that the Reynolds number for the
air+ow through the openings is so high that the +ow takes
the shape of jets on entering and leaving the room. Then,
the air pressure in the smallest cross-section of the jets, the
vena contracta, is equal to the surrounding pressure and the
air velocity in these sections can be considered uniform.
The air+ow between the vena contracta of the inlet and

the vena contracta of the outlet in a room is considered, cf.
Fig. 1. This +ow does not take place in a stream tube al-
though the +ow boundaries ful7l the stream tube requirement

0360-1323/03/$ - see front matter ? 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/S0360-1323(03)00132-X
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Nomenclature

A opening area (m2)
Ac area of vena contracta (m2)
Cc contraction coeHcient
Cv velocity coeHcient
H vertical distance between inlet and outlet (m)
H1 vertical distance from neutral plane to inlet (m)
H2 vertical distance from neutral plane to outlet (m)
G production rate of pollution (m3=s)
P exchange rate of work (W)
R gas constant of air (J=(kg K))
T temperature (K)
Ti; i internal temperature by frictionless +ow (K)
c air pollution concentration (m3=m3)
cp speci7c heat capacity of air by constant pressure

(J=(kg K))
g gravity acceleration (m=s2)
p pressure at the opening (Pa)
u internal energy per unit mass (J/kg)
y vertical co-ordinate of the opening (m)
vc air velocity in vena contracta (m/s)
vc; theo theoretically obtainable air velocity (i.e. by fric-

tionless +ow) (m/s)

wfr internal friction work per unit mass (J/kg)

Greek symbols

� net heat input (W)
�0 net heat input when indoor and outdoor temper-

ature are equal (W)
�E kinetic energy correction factor
� density of the gas (kg=m3)
 +ow coeHcient
� resistance coeHcient

Subscripts

acc accepted
c contracted
d discharge
i indoor
o outdoor
req required
1 inlet
2 outlet

Fig. 1. Control volume and control surface for room with two openings.

of no +uid transfer through the boundaries except through
the ends. The +uid does not follow streamlines when +ow-
ing from one vena contracta to the next. There is nor any di-
rect relationship between the +ow parameters (i.e. velocities,
cross-section areas and pressures) in lower and upper part
of the room and in the two venas contractas, like what you

7nd for the +ow in a stream tube. Therefore, the Bernoulli
equation is not valid for the considered air+ow. It is only
valid when the air+ow takes place in a stream tube with no
friction, no exchange of heat or work and with uniform air
velocity in any cross-section of the +ow. Even the modi7ed
version of the equation, which take friction and velocity
pro7le into account, is invalid.

2.1. Control volume

In order to ensure that all factors in+uencing the air+ow
can be taken into account, a control volume representing the
room is de7ned. The control volume of the case in ques-
tion is enclosed by the surfaces of the room, the two venas
contractas cross-sections and the two short lengths of jet be-
tween opening and vena contracta, cf. Fig. 1. In this volume
there will be no exchange of mass, energy and momentum
through the boundaries except through the two venas con-
tractas.
In a control volume, the total change of an extensive prop-

erty (i.e. a property dependent on the substance present such
as mass, energy and momentum) is considered. According to
the so-called Reynolds transport equation, the total change
is equal to the change rate of the property of the control
volume plus the eMux of the property through the control
surfaces (cf. e.g. [5,6]). In connection with the eMux, static
pressure, air velocity and cross-section areas are of interest
in the venas contractas.
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The static pressure in the vena contracta of the inlet jet is
equal to the indoor pressure at inlet level, and in the vena
contracta of the outlet jet, the static pressure is equal to the
outdoor pressure at outlet level.
The air velocity in the venas contractas can be considered

uniform and can be determined by

vc = Ccvc; theo; (1)

where vc is the air velocity in vena contracta, Cv the velocity
coeHcient and vc; theo the theoretically obtainable velocity
(i.e. by frictionless +ow).
The cross-section area of a vena contracta can be

determined by

Ac = CcA; (2)

where Ac is the area of the vena contracta (m2), Cc the
contraction coeHcient and A is the opening area (m2).

2.2. Mass balance

For a control volume with steady-state +ow, Reynolds
transport equation results in the continuity equation, which
states that the rate of increase of mass within the control
volume plus the net eMux of mass through its control volume
is zero. For the case shown in Fig. 1, this can be expressed
by

�oAc1vc1 − �iAc2vc2 = 0; (3a)

where � is the density of the gas (kg=m3), index 1 is used for
inlet, index 2 is used for outlet, index i is used for interior
conditions and index o is used for exterior conditions.
By introducing Eqs. (1) and (2) you get

�oCc1A1Cv1vtheo1 − �iCc2A2Cv2vtheo2 = 0

or

�oCd1A1vtheo1 − �iCd2A2vtheo2 = 0; (3b)

where Cd is the discharge coeHcient de7ned by

Cd = CcCv: (3c)

2.3. Energy conservation

Energy conservation expresses the 7rst law of thermody-
namics. For a control volume, you get an equation, which
states that the rate of change of stored energy (kinetic, po-
tential and internal energy) within the control volume plus
the eMux of stored energy across the control surface is equal
to the exchange rate of heat and work (i.e. net heat input
and exchange of power).
For the case shown in Fig. 1 with steady +ow (i.e. no

change in stored energy in the control volume), you get [5].

(ui2 + 1
2�E2v2c2 + gy2 + po2=�i)�ivc2Ac2

−(uo1 + 1
2�E1v2c1 + gy1 + pi1=�o)�ovc1Ac1

=�+ P; (4)

where u is the internal energy per unit mass (J/kg), �E the
kinetic energy correction factor, g the gravity acceleration
(m=s2), y the vertical co-ordinate of the opening (m), p the
pressure at the opening (Pa), � the net heat input (W) and
P the exchange rate of work (W).
The kinetic energy correction factor takes into account

that the velocity pro7le is not uniform. For a parabolic pro-
7le, you have �E ≈ 1:5, and for the turbulent +ow in vena
contracta with almost uniform velocity pro7le, you have
�E ≈ 1:02. In the following a value of unity is assumed.

The net heat input is the heat gain (from persons, electrical
equipment, sunshine, heating systems, etc.) minus the heat
losses (due to heat transmission through surfaces and to
in7ltration).
The exchange rate of work is related to work done by,

e.g. a fan. In the case in question you have P=0. Further, you
have the exchange rate of displacement work represented by
the p=�-terms.
Between internal energy, displacement work and temper-

ature you have the following relationship:

(ui;2 + po2=�i)− (uo1 + pi1=�o) = cp(Ti − To)

=cp(Ti; i − To) + wfr ; (5a)

where Ti; i is the internal temperature by frictionless +ow
(K), cp the speci7c heat capacity of air by constant pressure
(J=(kg K)) and wfr the internal friction work per unit mass
(J/kg).
Compared to frictionless +ow, the friction results in some-

what higher indoor temperature and a smaller air velocity.
When the friction loss takes place in an opening, it can be
expressed by

wfr = 1
2�v

2
c ; (5b)

where � is the resistance coeHcient.
By dividing Eq. (4) with the mass +ow �ovc1Ac1=�ivc2Ac2

and by inserting Eq. (5a) into the equation, you get with
P = 0

1
2v

2
c2 − 1

2v
2
c1 + g(y2 − y1) + cp(Tii − To)

+wfr =
�

�ovc1Ac1
; (5c)

where the unit for each term of the equation is J/kg.

2.3.1. Net heat input
Some heat gains and heat losses are temperature depen-

dent. For instance for increasing indoor temperature, heat
gains from persons (sensible heat) decreases and heat trans-
mission loss and in7ltration loss increases. Net heat input
can roughly be expressed by

�= �0 − k(Ti − To); (6)

where �0 is net heat input when indoor and outdoor tem-
perature are equal, and k is a constant, which depends on
building type and use of building.
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Frequently, a 7xed indoor temperature is aimed at, so
that a temperature di1erence can be estimated with reason-
able accuracy and so that a constant net heat input can be
assumed.

2.3.2. Reduced energy equation
If considering a room with a net heat input of 4000 W,

with a vertical distance between two equally large openings
of 10 m and with a temperature di1erence of 4 K, you get an
air velocity of about 1:1 m=s in the openings and an air+ow
rate of about 0:85 m3=s. In this case, the terms in Eq. (5c)
get the following values:

1
2v

2 ∼ 0:6 J=kg;

g(y2 − y1) ∼ 100 J=kg;

wfr ∼ 0:2 J=kg;

cp(Tii − To) ∼ 4000 J=kg;

�=(�ovc1Ac1) ∼ 4100 J=kg:

It is seen that the net heat input and internal energy are the
totally dominating terms in Eq. (5c). The energy equation
is therefore not suitable for determining any velocities, as it
would require exact values for net heat input and temperature
di1erence. The equation is only suited for determining the
di1erence between indoor and outdoor temperatures, and it
can, with an error below 1%, be reduced to

�ocpAc1vc1(Ti − To) = �: (7)

2.4. Momentum equation

Based on Newton’s second law for a 7nite system, an
equation for the acting forces in a control volume can be
set up. It states that the net internal force acting on the air
in the control volume equals the time rate of change of
momentum of the air within the control volume plus the
net rate of momentum +ux or transport out of the control
volume through its surface (cf. e.g. [6]). Being a vector
equation, the momentum equation can be split into scalar
equations.
In the horizontal equation, the velocity terms are small

compared to the remaining terms as was the case in the en-
ergy equation. In combination with uncertainties on pressure
distributions, the equation is unsuitable for determining air
velocities in the openings.
In the vertical momentum equation, the vertical velocity

component in the room is negligible and the equation results
in the well-known equation for linear (hydrostatic) pressure
distribution

pi1 − pi2 = �igH: (8)

3. Additional equations

Of the four fundamental +ow equations, only three equa-
tions are applicable as the horizontal momentum equation is
unsuitable. The net heat input (or its constant part) is the in-
dependent variable, and there are six dependent variable, �i,
Ti, vc1, vc2, pi1, and pi2. Three more independent equations
are therefore needed. Two equations can be derived by set-
ting up fundamental +ow equations for new control volumes
in connection with inlet and outlet air+ow, respectively. The
third one can be derived from the perfect gas equation.

3.1. Outlet air:ow

For the outlet air+ow, you can consider a control volume
as shown in Fig. 2. The control surface consists of a part of
an indoor spherical surface (being entrance of the control
volume), the vena contracta section of the outlet (being the
exit), and the surface of the jet connecting vena contracta
with the spherical surface. For this control volume, you can
set up the energy equation, whereas neither the mass balance
equation nor the two momentum equations are suitable in
this case.
In the entrance of the control volume, the air velocity is

very close to zero and the static pressure is pi2. For the exit,
the air velocity is vc2 and the pressure is po2. Besides there
is no heat supply and height levels for entrance and exit are
equal. For this control volume, you get, when comparing
with frictionless +ow

ui2 − uo1 = wfr ;

Fig. 2. Control volumes and control surfaces for inlet and outlet.
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which inserted into an equation similar to Eq. (4) together
with Eq. (5b) results in

1
2v

2
c2 + po2=�i + 1

2�2v
2
c2 − pi2=�i = 0

or

pi2 − po2 = Qp2 = 1
2�i(1 + �2)v2c2 =

1
2�i 2v2c2; (9a)

where  2 = 1 + �2 is a constant, in the following called the
+ow coeHcient, which is solely introduced to simplify some
of the equations in following.

3.2. Inlet air:ow

For the inlet air+ow, a control volume similar to the one
for the outlet can be considered, cf. Fig. 2. In this case,
air velocity and static pressure are vc1 and po1 at entrance
and they are approximately zero and pi1 at exit. With no
heat supply and entrance and exit at same level, you get in
similarity to Eq. (9a)

po1 − pi1 = Qp1 = 1
2�o(1 + �1)v2c1 =

1
2�o 1v2c1: (9b)

3.3. Density di;erence versus temperature di;erence

The atmosphere can be considered as a perfect gas, where
the relationship between pressure, density and temperature
is expressed by

p= �RT; (10a)

where R is the gas constant for the air. From this equation,
the following relationship between density di1erence and
temperature di1erence can be derived:

Q�= �o − �i =
1
R

(
po

To
− pi

Ti

)
=

1
R

(
poTi − piTo

ToTi

)

=
po

RTo

(
Ti − (pi=po)To

Ti

)
;

which again, after some manipulation, can be rearranged as

Q�= �o
Ti − To

Ti

(
1 +

To

Ti − To

po − pi

po

)

= �o
Ti − To

Ti
(1 + K): (10b)

In practice, the value ofK is smaller than 0:4×10−2. Further,
pi=po ≈ 1:0 with an error smaller than 0.02% so that �iTi ≈
�oT2, cf. Eq. (10a). From Eq. (10b) you then get with an
error below 0.5%

Q�=
po

RTo

(
Ti − To

Ti

)
= �o

QT
Ti

= �i
QT
To

: (10c)

3.4. Outside pressure distribution

In Eqs. (9a) and (9b), the two outside static pressures,
po1 at inlet level and po2 at outlet level, are introduced. As-
suming one of these pressures to be a known quantity, only
one new dependent variable is introduced and only one new
independent equation is required. This new equation can be
the hydrostatic relationship between the two pressures, i.e.

po1 − po2 = �ogH: (11)

4. Solutions

A total of seven equations with seven dependent variables
are derived, and you can get an unambiguous solution with
net heat input as independent variable. Alternatively, the in-
door air density or the indoor air temperature can be chosen
as independent variable. For instance, the indoor air tem-
perature acts as independent variable, when this temperature
is chosen as design criteria. The result is then unambigu-
ous solutions based on air density di1erences or temperature
di1erences as shown in the following.

4.1. Solution based on density di;erences

By using Eqs. (3a), (8), (9a), (9b) and (11), a solution
with air density di1erence as independent variable can be
derived.

4.1.1. Air velocities
From Eqs. (9a) and (9b), you get

pi1 = po1 − 1
2�o 1v2c1; (12)

pi2 = po2 + 1
2�o 2v2c2: (13)

By inserting these two equations into Eq. (8), you get

po1 − 1
2�o 1v2c1 − (po2 + 1

2�o 2v2c2) = �igH

and further, by using Eq. (11)

1
2�o 1v2c1 +

1
2�o 2v2c2

=− �igH + (po1 − po2) =−�igH + �ogH

=(�o − �i)gH =Q�gH: (14)

From Eq. (3a) you get

vc2 = (�o=�i)(Ac1=Ac2)vc1 (15)

and by inserting this into Eq. (14), you get for determining
the inlet velocity

1
2v

2
c1(�o 1 + �i 2(�o=�i)2(Ac1=Ac2)2) = gHQ�
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or

vc1 =
(

2Q�gH
�o 1 + �i 2(�o=�i)2(Ac1=Ac2)2

)1=2

=
(

2Q�gH
�o 1(1 + (�o=�i)( 2= 1)(Ac1=Ac2)2)

)1=2

=
(
2Q�gH1

�o 1

)1=2

; (16)

where

H1 =
H

1 + (�o=�i)( 2= 1)(Ac1=Ac2)2
: (17)

Similarly, you get for the outlet velocity (or by inserting Eq.
(16) into Eq. (15))

vc2 =
(
2Q�gH2

�i 2

)1=2

; (18)

where

H2 =
H

1 + (�i=�o)( 1= 2)(Ac2=Ac1)2
: (19)

By adding Eqs. (17) and (19) you get

H1 + H2 =
H

1 + n
+

H
1 + 1=n

= H: (20)

4.1.2. Pressure conditions. Neutral plane
Having determined the two velocities, indoor pressures at

inlet and outlet level can be found. From Eqs. (9b) and (16)
you get

pi1 = po1 − 1
2�i 1v2c1 = po1 −Q�gH1 (21a)

and by using Eq. (8) you get

pi2 = pi1 − �igH = po1 − (�o − �i)gH1 − �igH

or by inserting H1 = H − H2, cf. Eq. (20)

pi2 =po1 − �ogH + �ogH2 + �igH − �igH2 − �igH

=po1 − �ogH + �ogH2 − �igH2

=po2 + (�o − �i)H2: (21b)

As to the pressure di1erences across the openings, you get
from Eq. (21a) for the inlet

Qp1 = po1 − pi1 = Q�gH1 (22a)

and for the outlet, you get from Eq. (21b)

Qp2 = pi2 − po2 = Q�gH2: (22b)

As seen, there is an indoor negative pressure at inlet level
and an indoor positive pressure at outlet level. Somewhere

Fig. 3. Indoor and outdoor pressure distributions for room with two
openings and with uniform temperature.

in between will be a level with neutral pressure, i.e. where
indoor and outdoor pressures are equal. This level is called
the neutral plane.
The pressure conditions are illustrated in Fig. 3. Outdoor

pressure can be expressed by

poy = po1 − �ogy (23a)

and indoor pressure can be expressed by, when using
Eq. (21a)

piy = pi1 − �igy = po1 + Q�gH1 − �igy: (23b)

4.1.3. Neutral plane position
To 7nd the neutral plane position, Eqs. (23a) and (23b)

are equated, and you get

po1 − �ogy = po1 + (�o − �i)gH1 − �igy

or

(�o − �i)gy = (�o − �i)gH1

or

y = H1:

Thus, H1 is the vertical distance from neutral plane to inlet,
and from Eq. (20) it is seen that H2 is the vertical distance
from neutral plane to outlet.
The two distances can be expressed in a shorter form

H1 =
H

1 + n2
; (24)

H2 =
H

1 + (1=n)2
=

n2H
1 + n2

; (25)
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where

n= (�o=�i)( 2= 1)(Ac1=Ac2)2

= (�o=�i)(Cd2=Cd1)2(A1=A2)2: (26)

For instance for n = 1:0, you get H1 = H2 = H=2, and for
n= 2:0 you get H1 = 0:2H and H2 = 0:8H .
Frequently, it can be assumed that �u≈�i and that Cd1 ≈

Cd2. You then get

H1 ≈ H
1 + (A1=A2)2

; (27)

H2 ≈ H
1 + (A2=A1)2

: (28)

4.1.4. Air:ow rate
The air+ow rate through the inlet can be determined by

qv1 = Ac1vc1 = Cc1A1Cv1vtheo1 = Cd1A1

(
2Q�gH1

�o

)1=2

(29)

and for the air+ow rate through the outlet, you get

qv2 = Ac2vc2 = Cc2A2Cv2vtheo2 = Cd2A2

(
2Q�gH2

�i

)1=2

:

(30)

The two air+ow rates are di1erent corresponding to the two
di1erent air densities. However, the mass +ow rates through
the two openings are equal.

4.1.5. Stack e;ect and stack height
It is the quantity Q�gH , which creates the air+ow and

overcomes the friction in the two openings, cf. Eq. (14).
Therefore, this quantity is often called the stack e1ect, and
the vertical distance H between the openings is called the
stack height. The unit of the quantity is Pa or J=m3. It can
be interpreted as the pressure di1erence, which creates the
air movement, or the work carried out on 1 m3 air as to give
this amount of air a certain velocity.
The pressure di1erence across the inlet and the air velocity

in the inlet depends on the vertical distance H1 between
inlet and neutral plane. For the outlet, you have a similar
dependency on the distance H2. Therefore, the distances H1

or H2 are often called eHcient stack heights.

4.1.6. Coe>cients
By frictionless +ow, i.e. �=0, the air velocity in an open-

ing is determined by, cf. for instance Eq. (9a)

vtheo = (2Qp=�)1=2 (31)

and you get

Qp= 1
2�v

2
theo:

In a more general case with friction, you get from an equa-
tion similar to Eq. (9a), and by using Eq. (1), the following

equation for determining the velocity coeHcient Cv:

Qp= 1
2�v

2
theo =

1
2�(1 + �)v2c =

1
2�(1 + �)C2

v v
2
theo

or

Cv =
1

(1 + �)1=2
=

1
 1=2 : (32)

For the discharge coeHcient you get

Cd = CvCd =
Cc

(1 + �)1=2
=

Cc

 1=2 : (33)

For a simple sharp-edged opening as a window, you have
for instance � ∼ 0:1 and Cc ∼ 0:7 so that

Cv ≈ 1
(1 + 0:1)1=2

≈ 0:95

and

Cd ≈ 0:95 · 0:7 ≈ 0:65:

4.1.7. Air density considerations
So far, only air density di1erences due to temperature

have been considered. However, an air density di1erence
may as well be created by di1erences in moisture content.
Adding moisture to the air results in lower air density as the
weight of vapour is smaller than that of air. The relationships
between density, moisture content (or relative humidity) and
net moisture input are like the relationships between density,
temperature and net heat input.
When adding heat as well as moisture to the air, the e1ect

of the heat will be dominating under practical conditions.
Therefore, the relationship between air density di1erence
and air temperature, described by Eq. (10c), can still be
used. Only in very extreme situations will the error exceed
10%, and you will be on the safe side from a design point
of view.

4.2. Solution based on temperature di;erence

By replacing density di1erences with temperature
di1erences as expressed by Eq. (10b), you get a solution
with temperature di1erence as independent variable, and
with pressure di1erences, air velocities and air+ow rates
expressed by

Qp1 =
�ogH1QT

Ti
=

�igH1QT
To

; (34)

Qp2 =
�ogH2QT

Ti
=

�igH2QT
To

; (35)

vc1 =
(
2gH1QT

 1Ti

)1=2

; (36)

vc2 =
(
2gH2QT
 2To

)1=2

; (37)
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qv1 = Cd1A1

(
2gH1QT

Ti

)1=2

; (38)

qv2 = Cd2A2

(
2gH2QT

To

)1=2

; (39)

where

H1 =
H

1 + (Ti=To)(Cd1=Cd2)(A1=A2)2
; (40)

H2 =
H

1 + (To=Ti)(Cd2=Cd1)(A2=A1)2
: (41)

4.3. Solution based on net heat input

The di1erence between indoor and outdoor temperature is
due to the net heat input, and from Eq. (7) you get following
relationship between the two quantities:

QT =
�

�ocpAc1vc1
=

�
�ocpqV1

=
�

�icpqV2
: (42)

However, the air+ow rate in the denominator is not a 7xed
quantity. As seen from Eq. (38) it is dependent on the tem-
perature di1erence, i.e.

QT =
�

�ocpCd1A1((2gH1QT )=Ti)1=2
: (43)

For a 7xed net heat input, you get a temperature di1erence
that results in an air+ow rate, which removes an amount of
heat per time unit equal to the net heat input.

4.3.1. Constant net heat input
Assuming constant net heat input, Eq. (43) yields, when

solving it with regard to QT

QT =
(

�
�oTicpCd1A1

)2=3 ( 1
2gH1

)1=3

Ti:

Outdoor air density can be replaced by outdoor temperature
by using Eq. (10a), and after some manipulation you get

QT =
(

R
pocp

)2=3( 1
2g

)1=3(To

Ti

)2=3( �
Cd1A1

)2=3( 1
H1

)1=3

Ti:

For the constants, following values can be inserted:

R= 287 J=(kg K);

po = 101 300 Pa;

cp = 1010 J=(kg K);

g= 9:82 m=s2:

Further, under practical conditions you have with an error
below 2%

(To=Ti)2=3 = (1−QT=Ti)2=3 ≈ 0:97;

so that you get

QT = 7:1× 10−5
(

�
Cd1A1

)2=3 ( 1
H1

)1=3

Ti: (44)

When using the outlet conditions, you similarly get

QT = 7:5× 10−5
(

�
Cd2A2

)2=3 ( 1
H2

)1=3

To: (45)

By replacing temperature di1erences with net heat input
according to Eqs. (44) and (45), you get a solution with net
heat input as independent variable, and with air velocities
and air+ow rates expressed by

vc1 = 0:037
(

�H1

Cd1A1

)1=3 ( 1
 1

)1=2

; (46)

vc2 = 0:038
(

�H2

Cd2A2

)1=3 ( 1
 2

)1=2

; (47)

qv1 = Cc1A1vc1 = 0:037(�H1)1=3A
2=3
1

(
1

Cd1

)1=3

× Cc1

 1=2
1

= 0:037(�H1)1=3(Cd1A1)2=3 (48)

as Cc1= 
1=2
1 = Cd1, cf. Eq. (32).

Similarly, you get the following air+ow rate through the
outlet:

qV2 = 0:038(�H2)1=3(Cd2A2)2=3: (49)

4.3.2. Temperature-dependent net heat input
If net heat input is temperature dependent as shown by

Eq. (6), you get the following equation instead of Eq. (44):

QT = K(�0 − kQT )2=3

or

QT 3 = K3(�0 − kQT )2: (50)

Solving this equation of third degree, you get a complicated
expression for QT . It can be solved iteratively.

4.4. Design calculations

In the design situation, the task is to calculate the re-
quired opening areas to ensure acceptable indoor air quality
in winter and acceptable indoor thermal comfort in summer.
In winter as well as in summer, a required air+ow rate is
determined. In winter, when acceptable indoor air quality
is represented by an acceptable CO2 or moisture level, the
required air+ow rate is determined by

qVreq =
G

(ci;acc − co)
; (51)

where G is the production rate of pollution (m3=s), ci;acc the
accepted indoor pollution concentration (m3=m3) and co is
the outdoor pollution concentration (m3=m3).



K.T. Andersen / Building and Environment 38 (2003) 1281–1289 1289

In summer, when acceptable thermal comfort is repre-
sented by an acceptable air temperature Ti;acc, the required
air+ow rate is determined by, cf. Eq. (7)

qV; req =
�

cp�o(Ti;acc − T0)
: (52)

In the design situation, known quantities are building geom-
etry, represented by the vertical opening distance H, and the
opening area rate n= A1=A2.
In cases where it is preferable to work with a solution

based on temperature di1erence, the required inlet area is
determined by, cf. Eq. (38)

A1; req =
qV; req

Cd1((2gH1QT )=Ti)1=2
: (53)

If the solution is based on net heat input, you get from
Eq. (48)

A1 = 140
q3=2V; req

Cd1(�H1)1=2
: (54)

By solving Eq. (44), accepted indoor temperature can be
included, and you get

A1; req = 6:0× 10−7 �
Cd1

(
1
H1

)1=2 ( Ti

QTacc

)3=2

: (55)

From the required inlet area, the required outlet area can be
found as A2; req = A1; req=n.

5. Conclusion

By setting up and solving the fundamental +ow equations,
you get a solution with all parameters taken into account.
This gives a consistent explanation of the mechanism of
natural ventilation by thermal buoyancy. Further steps can

be taken with this fundamental method as to get correct
solutions in case of indoor temperature strati7cation or if
the room has more than two openings above each other.
Likewise it is possible to analyse analytically such questions
of importance for design and control as

• Is the opening orientation (vertical, horizontal or sloped)
of any importance?

• What happens, when the neutral plane intersects an open-
ing, and how can this be avoided?

• What is the optimal opening area ratio?
• What is the relationship between air+ow rate, opening
area and opening area ratio when either temperature dif-
ference or net heat input is kept constant?

By using the fundamental method, a reliable tool is obtained
for analysing and designing natural ventilation systems in
situations where thermal buoyancy is the dominating driving
force.
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