Prediction Models for Wind Speed at Turbines in a Farm with Application to Control
Knudsen, Torben; N. Soltani, Mohsen; Bak, Thomas

Published in:
Extended Abstracts for Euromech Colloquium 508 on Wind Turbine Wakes

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 11, 2018
Prediction Models for Wind Speed at Turbines in a Farm with Application to Control

Torben Knudsen, Mohsen Soltani and Thomas Bak

Aalborg University

October 22, 2009
The Aeolus project

This work is part of the EU-FP7 project with the title: Distributed Control of Large - Scale Offshore Wind Farms (Aeolus).
Overall control engineering view

The problem from a control point of view

Figure: Block diagram illustrating the centralised control problem.
Wind speed models for farm level control
Motivation and objectives

Motivation

- Modern control design methods is model based.
- Prediction models are used explicitly (MPC) or implicitly (LQG).
- A wind farm model includes the dynamics of the wind field.
- The important time scale is the average time for wind to travel between turbines which is typically 1 minute.

The objective is then:

Develop a method for making models for wind speeds at turbine positions in a wind farm where the available measurements are standard signals from the turbines. The models must be suitable for prediction.
Results from the literature

- In Sørensen (2005) it is concluded that the prediction of wind speeds from upwind turbines is not useful.
- Nielsen (2004) reports useful models for point wind speed at separation 300 m but a very weak relation over 600 m.
- Point wind speed coherence functions in e.g. Panofsky (1984) also support the above statement.

New challenges

- Try to develop methods that improves prediction performance over distances typical for a wind farm.
- A hypothesis is that the effective wind over the rotor should be more predictable.
Estimation of effective wind speed

Estimation task

Estimation of effective wind speed can be approached as a standard estimation problem.

\[\dot{x} = f(x, u, w), \]
\[y = h(x, u, v) \]

Given the system model above in SS form and the input \(u \) output \(y \) estimate the state \(x \).

- \(x \) is the state which would include the effective wind speed.
- \(u \) is the input i.e. blade pitch and generator torque or power reference
- \(w \) is process noise which maybe drives the wind model.
- \(y \) is measurements e.g. rotor speed, generator speed, produced power and maybe more.
- \(v \) is measurement noise.
Approaches from the literature

- Models used are either one or two inertia drive train models.
- The literature investigated uses a Kalman filter (KF) to estimate rotor torque.
- From this rotor torque plus rotor speed and pitch a direct calculation of wind speed is performed based on c_P tables.
- Consequently, no wind speed model is used.
Estimation model

One inertia drive train model plus wind speed model

State equations

\[I \dot{\omega}_r = T_r - T_g , \]
\[\dot{v}_t = -a(t)v_t + n_1 , \]
\[\dot{v}_m = n_2 , \]
\[T_r = \frac{1}{2} \rho v_r^3 Acp(\lambda, \beta) \frac{1}{\omega_r} , \quad \lambda = \frac{\omega_r R}{v_r} , \]
\[T_g = \frac{p}{\mu \omega_r} , \]
\[v_r = v_t + v_m \]

Tower was initially included both gave to poor observability.
Measurement equations

\[\omega_m = \omega_r + v_1 , \]
\[v_n = v_r + v_2 \]
Detailed wind speed model

- The wind turbulence model is time varying as it depends on average wind speed.
- This improves performance.

\[
\begin{align*}
 dv_t &= -a(v_m)v_t \, dt + dw_1, \\
 dv_m &= dw_2, \\
 w &\in W(Q), \\
 Q &= \begin{pmatrix} Q_{11}(v_m) & 0 \\ 0 & Q_{22} \end{pmatrix}, \\
 Q_{11}(v_m) &= \frac{\pi v_m^3 t_i^2}{L}, \\
 a(v_m) &= \frac{\pi v_m}{2L}
\end{align*}
\]
Based on the above models.

A extended continuous-discrete Kalman filter has been developed.

It has acceptable observability.

An reasonably white prediction errors.
An example of the obtained estimates is seen below.

Figure: Comparison of nacelle wind speed and estimated effective wind speed.
Measurements

Vestas kindly provided 1 second measurements from the OWEZ farm for the project.
Figure: Layout of OWEZ. The six turbines in the red box is the ones there are measurements for.
Example of 1 days measurements

Figure: Time plot for signals from WT02 for one day 2009-02-11.
Simple linear time invariant models

For single input single output (SISO) systems a linear time invariant (LTI) model can be defined as follows.

\[y(t) = G(q^{-1})u(t - n_k) + H(q^{-1})e(t), \quad e(t) \in \mathbb{ID}(0, \sigma^2) \]

\[G(q^{-1}) = \frac{B(q^{-1})}{A(q^{-1})}, \quad H(q^{-1}) = \frac{C(q^{-1})}{D(q^{-1})} \]
Selected model structures

ArxDel ARX model with delay. \(n_a = n_b = 2, n_k = 60, \ C(q^{-1}) = 1, D(q^{-1}) = A(q^{-1}) \).

BJDel Box-Jenkins model with delay.
\[n_a = n_b = n_c = n_d = 2, n_k = 60. \]

Per Persistence model, no input from upwind i.e.
\[\hat{y}(t + k | t) = y(t) \ \forall \ k. \]
\[A(q^{-1}) = 1 - q^{-1}, B(q^{-1}) = 0. \]
For estimation the first 4 hours is used.
And for cross validation the next 4 hours is used as illustrated in the figure.
Performance measures

- The RMS error is the standard error estimate for the predictions.

\[\text{RMS} = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (y(t) - \hat{y}(t|t-k))^2} \]

- The Fit is how much of the standard deviation in the output that is explained by the model.

\[\text{Fit} = 1 - \frac{\text{RMS}}{\hat{\sigma}_y} \]
Results for nacelle wind speed

<table>
<thead>
<tr>
<th></th>
<th>Pred. hor.</th>
<th>ArxDel</th>
<th>BJDel</th>
<th>Per</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec.</td>
<td>37.558</td>
<td>42.233</td>
<td>28.535</td>
<td></td>
</tr>
<tr>
<td>30 sec.</td>
<td>23.943</td>
<td>32.062</td>
<td>-9.159</td>
<td></td>
</tr>
<tr>
<td>60 sec.</td>
<td>23.937</td>
<td>31.548</td>
<td>-6.071</td>
<td></td>
</tr>
<tr>
<td>∞</td>
<td>23.937</td>
<td>32.153</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RMS (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec.</td>
<td>0.816</td>
</tr>
<tr>
<td>30 sec.</td>
<td>0.994</td>
</tr>
<tr>
<td>60 sec.</td>
<td>0.994</td>
</tr>
<tr>
<td>∞</td>
<td>0.994</td>
</tr>
</tbody>
</table>

Table: Predictability for nacelle wind speed using one upwind turbines and LTI models.
Results for effective wind speed

<table>
<thead>
<tr>
<th>Pred. hor.</th>
<th>ArxDel</th>
<th>BJDel</th>
<th>Per</th>
<th>ArxDel4To2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec.</td>
<td>94.466</td>
<td>94.520</td>
<td>94.380</td>
<td>94.454</td>
</tr>
<tr>
<td>30 sec.</td>
<td>68.346</td>
<td>67.928</td>
<td>59.516</td>
<td>64.846</td>
</tr>
<tr>
<td>60 sec.</td>
<td>66.862</td>
<td>66.056</td>
<td>52.501</td>
<td>61.178</td>
</tr>
<tr>
<td>∞</td>
<td>65.208</td>
<td>65.736</td>
<td></td>
<td>55.140</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>RMS (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sec.</td>
<td>0.055</td>
</tr>
<tr>
<td>30 sec.</td>
<td>0.314</td>
</tr>
<tr>
<td>60 sec.</td>
<td>0.329</td>
</tr>
<tr>
<td>∞</td>
<td>0.345</td>
</tr>
</tbody>
</table>

Table: Predictability for effective wind speed using one upwind turbines and LTI models.
The figure below zooms in on one of the largest gusts in the validation data. It is clear that a simple prediction model based on the first or second upwind turbine outperforms the persistence method.

Prediction of EWS

Figure: Example of predictions with a gust. Legend: Per is based on a persistence model. ArxDel is based on a ARX(2,2,60) \((n_a,n_b,n_k)\) model from WT 3 to 2. ArxBJ is based on a BJ(2,2,2,2,60) \((n_a,n_b,n_c,n_d,n_k)\) model from WT 3 to 2. ArxDel4To2 is based on a ARX(2,2,120) model from WT 4 to 2. All are 1 minute predictions except BJDel-sim which is pure simulation. Data: 2009-02-11
Conclusion

Effective wind speed estimation

■ In this paper an estimator for effective wind speed is developed.
■ This estimator includes the wind speed in a more “correct” way compared to the estimators found in the literature.
■ Using the estimator the effective wind speed for six turbines in the OWEZ farm has been estimated.
■ The effective wind speed is more suitable for predictions compared to the nacelle wind speed.
Predictability in a real wind farm

- Based on simple classical models the prediction error for this effective wind speed can be reduced with 30% using a upwind turbine compared to the persistence method.
- This reduction is for a prediction horizon of 1 minute and a distance of 632 m.
- The smallest standard deviation for this prediction error is 0.33 m/s corresponding to a 95% confidence interval at ±0.66 m/s which can be sufficiently small to be useful.
- When the distance is approximately doubled to 1277 m the reduction goes from 30% to approximately 15%.