Characterization of Lipoxygenases from Potato Tuber (cv. kuras)
Kristiansen, Rikke; Jørgensen, Malene; Welinder, Karen Gjesing

Publication date:
2009

Document Version
Publisher’s PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: december 17, 2018
Characterization of Lipoxygenases from Potato Tuber (cv. Kuras)

Rikke Kristiansen, Malene Jørgensen, and Karen G. Welinder

Section of Biotechnology, Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University

Introduction and Conclusion

Lipoxygenases (Lox; EC 1.13.11.12) are region- and stereospecific monomeric dioxygenases incorporating molecular oxygen into polyunsaturated fatty acids containing a cis-1,4-pentadiene moiety. This reaction produces conjugated cis-trans-diene hydroperoxides (Walker et al., 1996). Loxs have been found in animals, plants and bacteria (Porta and Rocha-Sosa, 2001). In plants, they are important in the biosynthetic jasmonic acid which might act as a signal molecule in wound response. Lox might also be involved in growth regulation and used as storage proteins. The most common substrates for plant Loxs are linoleic acid and linolenic acid (Porta and Rocha-Sosa, 2002). Plant Loxs are app. 100 kDa.

Three Lox isoforms were reported in DFCI Potato Gene Index (http://compbio.dfc.ihv.edu/cgi-bin/tgi/gimain.pl?gudb=potato) and one Kuras specific isoform was found in potato tuber (cv. Kuras). Sequence coverage of 74 % to 88 % of these isoforms was obtained by LC-ESI MS/MS. The N-terminus was sequenced in one of the isoforms. This showed that the N-terminus of this isoform was acetylated.

Structural analysis of potato Lox

Potato Lox can be divided into at least four classes; one expressed mostly in tuber and roots, one in leaves, one in leaves and roots, and one pathogen-induced type in leaf (Royo et al., 1996; Kolomiets et al., 2000; Kolomiets et al., 2001). Ten potato (Solanum tuberosum; St) Lox isoforms have been downloaded from ExPaSy and DFCI Potato Gene Index. In order to see how these Lox cluster, a phylogenetic tree was composed from the translated cDNA sequences (figure 1) using the ClustalX2 software (http://www.clustal.org/).

Figure 1: Phylogenetic tree of ten potato (Solanum tuberosum; St) Lox sequences translated from cDNA. The four at the bottom are from leaf tissue while the rest are from tubers.

The three Lox isoforms from leaf plus leaf and root are longer at their N-termini, compared to chloroplast targetting signals. Tubule STLox is found in vacuoles, but the transport mechanism is unknown due to no known targeting signal. Tuber Loxs are more closely related to the pathogen-induced leaf Lox than the other leaf Loxs.

In all STLoxs in figure 1, the amino acids considered to be important for functionally active enzymes are conserved. These amino acids include three histidines (His517, His521, and His522; kuras k1,215 numbers) and the C-terminal isoleucine (Ile860; k1,215 number) which have been shown to bind the iron atom of the active site. A fifth active site iron ligand is a water molecule (Miner et al., 1996). The substrate cavity and the iron coordination network are connected by a hydrophobic bonding network composed of Gln697, Gln698, and Asn699 (k1,215 numbers) providing a very specific cavity for substrate binding (Tomchick et al., 2001). The conserved amino acids can be seen in figure 2, which is the crystal structure of soybean (Glycine max; Gm) Lox1 (PDB structure no. 188n, 1.40 Å resolution). This crystal structure was chosen because no crystal structure of a STLox exists. GmLox1 is 56 % identical to k1,215 (a Kuras specific STLox).

Figure 2: Soybean (Glycine max; Gm) Lox1 (PDB structure no. 188n, 1.40 Å resolution) with the conserved amino acids (His517, His518, His519, Asn520, Gln521 and Gln522; GmLox1 numbers). Left: GmLox1 with the active site in the middle. Right: Close up of the active site. The histidines are shown in red, the isoleucine in yellow, the asparagine in green, and the glutaminines in cyan.

In all STLoxs in figure 1, the amino acids considered to be important for functionally active enzymes are conserved. These amino acids include three histidines (His517, His518, and His519; kuras k1,215 numbers) and the C-terminal isoleucine (Ile860; k1,215 number) which have been shown to bind the iron atom of the active site. A fifth active site iron ligand is a water molecule (Miner et al., 1996). The substrate cavity and the iron coordination network are connected by a hydrophobic bonding network composed of Gln697, Gln698, and Asn699 (k1,215 numbers) providing a very specific cavity for substrate binding (Tomchick et al., 2001). The conserved amino acids can be seen in figure 2, which is the crystal structure of soybean (Glycine max; Gm) Lox1 (PDB structure no. 188n, 1.40 Å resolution). This crystal structure was chosen because no crystal structure of a STLox exists. GmLox1 is 56 % identical to k1,215 (a Kuras specific STLox).

Sequence coverage of Lox isoforms

Proteolytic digests

STLox were purified from potato tubers (cv. Kuras) in a number of precipitation and chromatographic steps. In-solution digestion was carried out on MonoQ fractions. The proteins were reduced and carboxymethylated, and digested with sequencing grade modified trypsin (Promega, Madison, USA), or sequencing grade modified chymotrypsin (Boeringer Ingelheim GmbH, Ingelheim, DE). In-gel digest was performed on Lox-containing bands from SDS-gels. The proteins were reduced and carboxymethylated, and digested with sequencing grade modified trypsin (Promega, Madison, USA). Digests were analysed by nanoflow RP-chromatography interfaced directly to an electro spray ionization Q-TOP tandem mass spectrometer (LC-ESI MS/MS; MicroTOF, Bruker Daltonics, Bremen, DE). Merged MS/MS data were search by the MASCOT search engine (www.matrixscience.com) against our A. tuberosum protein database.

Figure 3: Translated cDNA from four potato tuber Lox isoforms. The grey areas correspond to peptides seen by MS/MS ion search when merging all data. The green areas correspond to amino acids found subsequently by error tolerance search.

The sequence coverage of the four potato tuber Lox isoforms (figure 3) is as it follows; 87 % of k1,215, 81 % of TC163846, 81 % of TC164496 and 94 % of TC163045 have been sequenced. TC163045 is acetylated at the N-terminus.

References