Discovery, Structure and Tentative Functions of a C-terminal propeptide of Vacuolar Potato Lipases (Patatins)

Welinder, Karen Gjesing; Jørgensen, Malene

Publication date: 2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Potato tuber patatins amount to 25-40% of potato tuber protein. They are dimers of ca. 90 kDa with N-glycosylation. The deduced N-linked glycan structure of patatin (Figure 1) is very similar to patatin pat1-k1 through pat4-k1 as discussed, but they are also bound to and cleaved by a vacuolar processing enzyme. We analyzed the interactions of the basic helical C-terminal residues of mature patatin (Figure 3). The amino acid sequence of pat-17 from *Solanum carthayophorum* is very similar to patatin pat1-k1 through pat4-k1 from *Solanum tuberosum* cv Kuras. A recombinant form was expressed in E. coli with a N-terminal histidine tag and the pre-propeptide (Figure 1). The structure shows the pre-propeptide sticking out from the N-terminal end of the molecular surface. Therefore, the C-terminal residues of mature patatin are exposed to the medium and are present in the C-terminal region. The N-terminal region of the pre-propeptide is not exposed to the medium, as discussed.

We are grateful to Drs. Allan Stensballe and Karen Wierenga for their MS and data mining support, respectively. To Cam Scottish Potato Research Centre for a grant and the Danish Research Agency for the financial support. L. M. and T. H. C. are recipients of the European Molecular Biology Organization (EMBO) long-term fellowship. We thank Magnus Franzmann and Jeppe Emmerden for their MS and data mining support. We are grateful to Dr. Allan Stensballe and Karen Wierenga for their MS and data mining support, respectively.

References and Acknowledgements

Protein Sequencing of Mature Patatins

Potato tuber patatins amount to 25-40% of potato tuber protein. They are dimers of ca. 90 kDa with N-glycosylation. The deduced N-linked glycan structure of patatin (Figure 1) is very similar to patatin pat1-k1 through pat4-k1 from *Solanum tuberosum* cv Kuras. A recombinant form was expressed in E. coli with a N-terminal histidine tag and the pre-propeptide (Figure 1). The structure shows the pre-propeptide sticking out from the N-terminal end of the molecular surface. Therefore, the C-terminal residues of mature patatin are exposed to the medium and are present in the C-terminal region. The N-terminal region of the pre-propeptide is not exposed to the medium, as discussed.