Clustered PV Inverters in LV Networks: An Overview of Impacts and Comparison of Voltage Control Strategies

Erhan Demirok, Dezso Sera, Student Member, IEEE, Remus Teodorescu, Senior Member, IEEE, Pedro Rodriguez, and U. Borup, Member, IEEE

Abstract—High penetration of photovoltaic (PV) inverters in low voltage (LV) distribution network challenges the voltage stability due to interaction between multiple inverters and grid. As the main objective is to provide more power injection from VSC-based PV inverters, grid stability, reliability and power quality must be maintained or improved by adding cooperative control features to the grid-connected inverters. This paper first gives an overview of bilateral impacts between multiple distributed generations (DG) and grid. Regarding of these impacts, recent advances in static grid voltage support functionalities to increase penetration level are compared considering voltage rise limitation. Steady-state simulation study is realized in PSCAD/EMTDC and the results are discussed in terms of total generation efficiency.

Index Terms—Distributed generation (DG), LV network, power curtailment, PV inverter, reactive power control, voltage control.

I. INTRODUCTION

PV installations can mainly be categorized into two types of applications depending on generation capacity and installation area: Solar parks, clustered PV. High-power, centralized inverters are usually interfaced to medium voltage (MV) network in solar parks up to total capacity of tens of MWp ratings [1]-[5]. Clustered PV systems are highly distributed, connected to LV networks in small rated PV capacities (from a few kWp to tens of kWp) and generally installed on the rooftops [4], [6]-[8]. Each building has own PV inverters and distribution network usually exhibits strong grid characteristics in the residential urban area. In the case of high PV penetration, the network voltage can increase to unacceptable level when active power generation is higher than load demand. This paper deals with the second case which multiple inverters interact with residential LV distribution network.

Up to the present time, the function of distributed PV inverters was to inject current synchronized with grid where its magnitude depends on available dc power and its phase is adjusted in such a way that unity power factor is achieved. Besides active power injection, additional functions can be added as ancillary services like low order selective harmonic compensation [9], anti-islanding detection [10], [11], low-voltage ride-through [12] and voltage unbalance correction [12], [13] by improving grid interaction capabilities of inverters. But these multifunctional features are not enough to avoid voltage rise phenomena which is limited by utility standards [14], [15] at the point of common couplings. Further on, as opposed to HV and MV networks, LV distribution networks which are mostly designed as radial configuration show resistive impedance characteristics [16]. Moreover, instead of on-load tap changer (OLTC) transformers [17], off-load tap changers for MV/LV distribution transformers are widely used in the substations and single-phase loads are dominantly distributed along the network [18]. Accordingly, control strategies of LV grid-interfaced PV inverters and relevant grid requirements differ from MV grid-interfaced inverters where grid voltage support features are included.

This paper discusses some reported control strategies of LV grid-interfaced inverters in order to keep network voltage in a defined range without violating over voltage values due to power injection into the grid and improve penetration level. Firstly, arising interaction problems between distributed inverters and LV network are briefly defined in section II. Voltage control strategies are investigated and compared in section III. A benchmark LV residential feeder with PV inverters is modeled by using PSCAD/EMTDC and simulation results are given in section IV by implanting different voltage control strategies. In section V, the paper is concluded with some remarks for future work in the area of control of grid interactive multiple inverters in LV networks.

II. BILATERAL IMPACTS BETWEEN MULTIPLE PV INVERTERS & LV NETWORK

A. Voltage Rise

One of the impacts of high number of distributed PV inverters along LV network is voltage increase. Second column of Fig. 1 depicts the typical voltage profile when each PV inverter injects active power under maximum nominal and light loads. Since off-load tap of LV distribution transformer is already adjusted by estimating voltage drop with maximum nominal load, only minimum load or light load condition

E. Demirok, D. Sera, and R. Teodorescu are with the Section of Power Electronics Systems, Institute of Energy Technology, Aalborg University, 9220 Aalborg, Denmark (e-mail: ede@iet.aau.dk; des@iet.aau.dk; ret@iet.aau.dk).

P. Rodriguez is with the Department of Electrical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Spain (e-mail: prodriguez@ee.upc.edu).

U. Borup is with Danfoss Solar Inverters A/S, Jyllandsgade 28 DK-6400 Sonderborg, Denmark (e-mail: uffe.borup@danfoss.com)
should be estimated to investigate voltage rise. Possible solutions to the voltage rise problem can be mainly categorized as follows [19]:

- Output power limitation
- Reactive power control capability
- Storage system
- DVR, STATCOM, SVC addition to the network

C. DC Injections

DC current circulating in the network might saturate grid-interfaced magnetic components; generate pulsating torques, vibration and additional heating on electrical machines. Further on, half-cycle saturation causes reactive power loss in distribution transformers due to orthogonality of half-cycle current and voltage vector [24]. Cyclo-converters and transformerless inverters are potential risks of dc current injection into LV network [25], [26]. While isolation transformer is obligatory only in Spain to mitigate dc injection problem [27], in other countries like Germany, UK, Japan and Australia, a dc detection device with disconnection feature for transformerless inverters is required and maximum allowable dc current varies between 0.5-1 percent of inverter rated current by various national standards [28].

D. Unintentional Islanding

When power system is disconnected from a downstream local network due to maintenance purpose or unintentional disconnection (equipment failures), grid-interfaced PV inverters might keep on power injection into isolated part. Since the most inverters are based on current controlled VSC, voltage/frequency stability of islanded network becomes degraded. Potential risks also arise for line workers [26]. Inverters shall either operate as voltage sources (assuming having enough reserved power for a short-time operation) or be shut down after islanding. For this reason, islanding condition shall be detected correctly [29], [30].

Islanding detection methods are mainly implemented in two ways assuming no communication link is installed: Passive and active methods. While only local measurements are employed to determine grid condition for passive methods, current or power injections by disturbing grid without loss of power quality are required in the case of active methods. In [31], passive methods are investigated as over/under voltage (OUV), over/under frequency (OUF), voltage harmonic and phase monitoring. There exists current harmonics injection method, active/reactive power variation method, capacitor connection method, Sandia voltage shift (SVS), slip-mode frequency shift (SMS) active methods by perturbing and measuring point of common coupling (PCC) voltage [32].

E. Voltage Dips and Unbalance

Voltage dip is defined as reduction in rms voltage between 1% and 90% of nominal value with duration between half cycle to several seconds [14], [33]. It causes sensitive equipments failed to function properly. Short circuits (in HV, MV and LV networks) and high load start-ups are the main reasons of voltage dip. Since short circuit can be occurred in a symmetrical or unsymmetrical manner depending on fault type, voltage dips can also be in various types [34].

Although the depth of a voltage dip depends on fault location, network impedance and short circuit power of MV/LV transformers [35], grid interfaced multiple inverters which have voltage support features can contribute to mitigation of voltage dips [12], [36]-[39].
F. Grid Impedance Variation

Grid interfaced inverters require output filter to attenuate low and high frequency components and coupling to the grid. LCL filters have better stability and cost performance than L/LC/LLC filters with lower grid harmonic sensitivity [40]-[42]. Active or passive methods are also required to damp resonance frequency of LCL filter according to grid impedance.

In [43] and [44], it is shown that if inverter with P+Resonant controller [9] and LCL filter is designed with respect to stiff grid condition but it is connected to weak grid (higher grid inductance), then low frequency resonant controllers (at 5th and 7th) might be out of range of current controller bandwidth. Increasing proportional gain to extend bandwidth might cause closed-loop system be unstable. In similar way, at high frequency range, passive and active damping methods designed with respect to strong grid condition become inefficient under weak grid condition. Accordingly grid impedance information can increase efficiency of active damping by varying resonance damping of poles and zeros.

III. VOLTAGE CONTROL STRATEGIES

In this section, the most used voltage control strategies as solutions to the network voltage rise problem are given regarding that no storage system is installed in the clustered PV system. Only local PCC measurements are utilized.

A. Power Curtailment

When inverter output terminal voltage reaches to over voltage level, output active power is limited by forcing operation from the maximum power point towards the open circuit voltage of PV panel. If the PCC terminal voltage still maintains overvoltage issue \(U_{lim} = U_n + 10\% U_n\), then the inverter finally ceases power transfer into grid [45], [46].

In the event that local PCC voltage still keeps on overvoltage situation, power curtailment strategy can be put into use [47]. In this case, additional inverter capacity is required to be able to provide reactive power flow. 17.64-% over-rating extends the operation range of inverter between 0.85 lagging and 0.85 leading power factor.

![Fig. 3. Reactive power support (static voltage) capability between 0.85 lagging and 0.85 leading.](image)

Fig. 3 can be easily implemented in PSCAD/EMTDC by writing script of Equation 1.

\[
Q_{ref} = \begin{cases}
10 \times \left(\frac{Q}{P_n} \right)_{max} \left(-\left(\frac{1}{V_{rms}} \right) + 1 \right), & 0.9 < V_{rms} < 1.1 V_n \\
\left(\frac{Q}{P_n} \right)_{max}, & V_{rms} \leq 0.9 V_n \\
-\left(\frac{Q}{P_n} \right)_{max}, & V_{rms} \geq 1.1 V_n
\end{cases}
\] \tag{1}

IV. SIMULATION STUDY AND RESULTS

A. Benchmark Network Model

LV network model and its parameters are given in Table I. Single-phase group of fixed loads and PV inverters are connected to the feeder through four nodes with realistic distances (Fig. 4).

![Fig. 2. Power curtailment after over voltage condition.](image)

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>BENCHMARK NETWORK PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV Grid</td>
<td>Un=20 kV line-to-line Sk=200 MVA, R/X=0.5</td>
</tr>
<tr>
<td>Distribution Transformer</td>
<td>Dyn11, 20/0.4 kV, S=250 kVA, uk=4% Pcu=3.25 kW</td>
</tr>
<tr>
<td>Cable</td>
<td>NAYY 4x95 r=0.32 ohm/km x=0.082 ohm/km</td>
</tr>
</tbody>
</table>

Each RL load is represented as fixed power RL loads. Equivalent resistance and inductance are dynamically updated in such a way that reference values of apparent power and power factor are tracked by measuring terminal voltage. To study voltage rise in the feeder and total power generation...
efficiency from inverters, switching and network transients are neglected in this paper. Each PV inverter is composed of current source with grid synchronization and voltage control strategies under assumption of fixed PV power and 100% converter efficiency (Fig. 5).

Efficiency from inverters, switching and network transients are neglected in this paper. Each PV inverter is composed of current source with grid synchronization and voltage control strategies under assumption of fixed PV power and 100% converter efficiency (Fig. 5).

\[i(t) = \sqrt{2} I_{ref}(t) \sin[\alpha t - \delta - \arccos(pf)] \]

Equivalent impedances of 20-kV grid and distribution transformer are calculated from given short-circuit capacities to reflect real LV distribution network in the simulation.

To verify operation of distribution network together with loads and PV inverters, feeder voltage profiles without PV and with PV integration are depicted in Fig. 6 under different load profiles and PV penetration levels (Table II). Over voltage condition is created in scenario 3 where inverters are only injecting active power (power factor=0) and power flows from LV to MV network through distribution transformer.

B. Simulation Results of Power Curtailment and Reactive Power Control

Two voltage control strategies, power curtailment and reactive power control, are compared in this section. By including additional script of power curtailment into PV subsystem, as shown in Fig. 7, the feeder voltage is forced to stay under 253V. In this case injected active power into grid is reduced (more than 50% for node 4). The most power reduction occurs at node 4 which has a higher local voltage due to reverse power flow in the feeder (Fig. 8). When the owner of PV generation plants is residential units, power curtailment strategy by itself is not feasible due to unfair power limitation between generators.

In place of power curtailment strategy, reactive power capability between 0.85 leading and 0.85 lagging is added to each inverter model by keeping fixed active power injection (Fig. 9). 15-kW maximum active power generation for each node during simulation is chosen in such a way that 0.85 lagging power factor operation without loads does not cause over voltage issue in the feeder.

Despite higher available power, only 59.72% of total generation capacity is injected into the feeder to comply with local PCC voltage constraint for power curtailment strategy. Furthermore, as shown in Fig. 8, inverters which are located at node 1 have no contributions to curtailments. In the case of reactive power strategy, more power injection is achieved but reactive power support by inverters are limited. Moreover, additional reactive power flows along the feeder caused by lagging power factor operation of inverters and reactive power transfer losses are also boosted. Alternatively, these two strategies without communication link between inverters can be used together by optimizing active power injection when PCC voltage exceeds limit value. Thus, the operation range
Voltage distribution along feeder with PV integration

Fig. 6. Voltage profile (a) without PV, (b) with PV

Fig. 7. Voltage profile with power curtailment

Fig. 8. Active power generation profile of single-phase inverters equipped with power curtailment strategy

Fig. 9. Active and reactive power generation profile of single-phase inverters equipped with reactive power strategy

V. CONCLUSION

Large penetration of DG in LV distribution may lead to power quality problems with too high voltage during light load situations. This has been simulated under realistic conditions.

Two possible autonomous strategies which can be implemented in individual inverters have been studied. Power curtailment is one strategy, which can be used to keep the grid voltage within the limits of EN50160. This strategy may lead to a high level of power curtailment with unfair distribution between the single inverters.

As a second strategy, reactive power control improves the level of power delivery, but it is still not efficient method for high value of R/X networks and additional inverter size is required to absorb reactive power from the grid.

More intelligent methods should be used for better utilization of the distribution network.

VI. REFERENCES

[24] DC injection into low voltage AC networks, DTI, 2005

