## Aalborg Universitet



## Problem-Based and Project-Based Learning in Engineering Education

Merging Models Kolmos, Anette; de Graaff, Erik

Published in: Cambridge Handbook of Engineering Education Research

DOI (link to publication from Publisher): 10.1017/CBO9781139013451.012

Publication date: 2014

Document Version Early version, also known as pre-print

Link to publication from Aalborg University

*Citation for published version (APA):* Kolmos, A., & de Graaff, E. (2014). Problem-Based and Project-Based Learning in Engineering Education: Merging Models. In A. Johri, & B. M. Olds (Eds.), *Cambridge Handbook of Engineering Education Research* (pp. 141-161). Cambridge University Press. https://doi.org/10.1017/CBO9781139013451.012

#### **General rights**

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal -

#### Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

# Contents

| Editors                                                                                                                                           | <i>page</i> xiii |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|
| Contributors                                                                                                                                      | XV               |  |  |  |
| Foreword                                                                                                                                          |                  |  |  |  |
| Norman L. Fortenberry                                                                                                                             |                  |  |  |  |
| Acknowledgments                                                                                                                                   |                  |  |  |  |
| Introduction<br>Aditya Johri and Barbara M. Olds                                                                                                  | 1                |  |  |  |
| 1. Chronological and Ontological Development of Engineering<br>Education as a Field of Scientific Inquiry<br>Jeffrey E. Froyd and Jack R. Lohmann | 3                |  |  |  |
| PART 1                                                                                                                                            |                  |  |  |  |
| ENGINEERING THINKING AND KNOWING                                                                                                                  |                  |  |  |  |
| 2. Learning Theories for Engineering Education Practice <i>Wendy</i> C. <i>Newstetter and Marilla D. Svinicki</i>                                 | 29               |  |  |  |
| 3. Situative Frameworks for Engineering Learning Research<br>Aditya Johri, Barbara M. Olds, and Kevin O'Connor                                    | 47               |  |  |  |
| <ol> <li>The Social Nature of Representational Engineering Knowledge<br/>Wolff-Michael Roth</li> </ol>                                            | 67               |  |  |  |

х

|     | CONTENTS                                                                                                                                                                                               |     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 5.  | Conceptual Change and Misconceptions in Engineering<br>Education: Curriculum, Measurement, and Theory-Focused<br>Approaches<br>Ruth A. Streveler, Shane Brown, Geoffrey L. Herman, and Devlin Montfort | 83  |
| 6.  | Engineers as Problem Solvers<br>David H. Jonassen                                                                                                                                                      | 103 |
| 7.  | Professional Engineering Work<br>Reed Stevens, Aditya Johri, and Kevin O'Connor                                                                                                                        | 119 |
|     | RT 2<br>GINEERING LEARNING MECHANISMS AND APPROACHES                                                                                                                                                   |     |
| 8.  | Problem-Based and Project-Based Learning in Engineering<br>Education: Merging Models<br><i>Anette Kolmos and Erik de Graaff</i>                                                                        | 141 |
| 9.  | Case Studies in Engineering<br>Claire Davis and Aman Yadav                                                                                                                                             | 161 |
| 10. | Curriculum Design in the Middle Years<br>Susan M. Lord and John C. Chen                                                                                                                                | 181 |
| 11. | Engineering Design Education: Research, Practice, and Examples<br>that Link the Two<br>Cynthia J. Atman, Ozgur Eris, Janet McDonnell, Monica E. Cardella, and<br>Jim L. Borgford-Parnell               | 201 |
| 12. | Adaptive Expertise and Knowledge Fluency in Design and<br>Innovation<br><i>Ann F. McKenna</i>                                                                                                          | 227 |
| 13. | Learning Disciplinary Ideas and Practices Through Engineering<br>Design<br>Kristen Bethke Wendell and Janet L. Kolodner                                                                                | 243 |
|     | RT 3<br>THWAYS INTO DIVERSITY AND INCLUSIVENESS                                                                                                                                                        |     |
| 14. | Engineering Identity<br><i>Karen L. Tonso</i>                                                                                                                                                          | 267 |
| 15. | Studying the Career Pathways of Engineers: An Illustration with<br>Two Data Sets<br>Sheri D. Sheppard, Anthony Lising Antonio, Samantha R. Brunhaver, and<br>Shannon K. Gilmartin                      | 283 |
| 16. | Retention and Persistence of Women and Minorities Along the<br>Engineering Pathway in the United States<br>Gary Lichtenstein, Helen L. Chen, Karl A. Smith, and Theresa A. Maldonado                   | 311 |
| 17. | Social Justice and Inclusion: Women and Minorities in Engineering                                                                                                                                      | 335 |

Donna Riley, Amy E. Slaton, and Alice L. Pawley

| CONTENTS                                                                                                                                                                           | xi    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 18. Community Engagement in Engineering Education as a Way to<br>Increase Inclusiveness<br><i>Christopher Swan, Kurt Paterson, and Angela R. Bielefeldt</i>                        | 357   |
| PART 4<br>ENGINEERING EDUCATION AND INSTITUTIONAL<br>PRACTICES                                                                                                                     |       |
| 19. Translating Research to Widespread Practice in Engineering<br>Education<br><i>Thomas A. Litzinger and Lisa R. Lattuca</i>                                                      | 375   |
| 20. Research-Guided Teaching Practices: Engineering Threshold<br>Concepts as an Approach to Curriculum Renewal<br>Sally A. Male and Caroline A. Baillie                            | 393   |
| 21. Engineering Instructional Development: Programs, Best Practices,<br>and Recommendations<br><i>Richard M. Felder, Rebecca Brent, and Michael J. Prince</i>                      | 409   |
| 22. Understanding Disciplinary Cultures: The First Step to Cultural<br>Change<br><i>Elizabeth Godfrey</i>                                                                          | 437   |
| 23. Preparing Engineering Educators for Engineering Education<br>Research<br><i>Maura Borrego and Ruth A. Streveler</i>                                                            | 457   |
| PART 5<br>RESEARCH METHODS AND ASSESSMENT                                                                                                                                          |       |
| 24. Studying Teaching and Learning in Undergraduate Engineering<br>Programs: Conceptual Frameworks to Guide Research on Practice<br><i>Lisa R. Lattuca and Thomas A. Litzinger</i> | e 477 |
| <ul><li>25. Design-Based Research in Engineering Education: Current State and Next Steps</li><li>Anthony E. Kelly</li></ul>                                                        | 497   |
| 26. Quantitative and Mixed Methods Research: Approaches and<br>Limitations<br>Barbara M. Moskal, Teri Reed, and Scott A. Strong                                                    | 519   |
| 27. Framing Qualitative Methods in Engineering Education Research:<br>Established and Emerging Methodologies<br>Jennifer M. Case and Gregory Light                                 | 535   |
| 28. Conducting Interpretive Research in Engineering Education Using<br>Qualitative and Ethnographic Methods<br><i>Aditya Johri</i>                                                 | 551   |
| 29. The Science and Design of Assessment in Engineering Education<br>James W. Pellegrino, Louis V. DiBello, and Sean P. Brophy                                                     | 571   |

### xii

CONTENTS

| PAF | ат б                                                                                                     |     |  |  |
|-----|----------------------------------------------------------------------------------------------------------|-----|--|--|
| CR  | CROSS-CUTTING ISSUES AND PERSPECTIVES                                                                    |     |  |  |
| 30. | Engineering Communication<br>Marie C. Paretti, Lisa D. McNair, and Jon A. Leydens                        | 601 |  |  |
| 31. | Use of Information Technology in Engineering Education<br>Krishna Madhavan and Euan D. Lindsay           | 633 |  |  |
| 32. | Global and International Issues in Engineering Education<br>Aditya Johri and Brent K. Jesiek             | 655 |  |  |
| 33. | Engineering Ethics<br>Brock E. Barry and Joseph R. Herkert                                               | 673 |  |  |
| 34. | The Normative Contents of Engineering Formation: Engineering<br>Studies<br>Gary Lee Downey               | 693 |  |  |
| 35. | Interdisciplinarity in Engineering Research and Learning Nancy J. Nersessian and Wendy C. Newstetter     | 713 |  |  |
|     | Conclusion: Engineering at the Crossroads: Implications for<br>Educational Policy Makers<br>John Heywood | 731 |  |  |
| Ind | ex                                                                                                       | 749 |  |  |