Butyric acid fermentation with in-situ products separation
Baroi, George Nabin; Skiadas, Ioannis; Westermann, Peter; Gavala, Hariklia

Publication date:
2014

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Butyric acid fermentation with in-situ products separation

Baroi G.N 1, Skiadas I.V. 1, Westermann P. 1, Gavala H.N. 1.

1Aalborg University Copenhagen (AAU-Cph), Department of Biotechnology, Chemistry and Environmental Engineering, A C Meyers Vænge 15, DK 2450 Copenhagen SV Denmark.

Background
Butyric acid and its esters are used as food supplements, as artificial flavours, as solvent and even its potential beneficial effects in intestinal and extra intestinal diseases and sickle cell disease have been reported. Another potential use of butyric acid is to produce butanol via catalytic hydrogenation. The demand of the butyric acid is approximately 50,000 ton/year. The main bottlenecks of commercialization of biological production of acids (in overall) are:

1. utilization of cheap feed stocks
2. Proper strain selection &/or improvement
3. Process development for higher productivity
4. Downstream processing

The first three aspects were successfully considered for biological butyric acid production from pretreated and hydrolysed wheat straw (PHWS) by C. tyrobutyricum. Continuous fermentation and in-situ separation of butyric acid increased C6 and C5 consumption and butyric acid production rates compared to batch fermentation without in-situ products removal. The process efficiency was verified in pilot-scale as well. However, further improvement of downstream process required.

Results

Rates of synthetic medium (mixed glucose and xylose) based fermentation with and without in-situ acids separation by REED at HRT 1 day

- Glucose and Xylose concentrations (g/L) for A (38, 22), B (54, 34) and C (38, 22)
- Consumption and production rate (% /v) PHWS in a medium with

Continuous fermentation of 100% PHWS with REED

- Rates (%/v) PHWS in a medium with
- Remaining in the fermentor
- oceanic extract by REED
- metabolized
- Acid from feedflow extracted by REED

Conclusion
- Fermentation coupled with REED in-situ separation of PHWS with the adapted C. tyrobutyricum gave a higher (28 to 58%) butyric acid yield compared to synthetic medium fermentation.
- Continuous fermentation exhibited much higher (>600% for 60% PHWS) sugars consumption rates compared to batch fermentations.
- With REED in-situ acid separation results higher sugars consumption rate and C4 production rates (>46%)
- Fermentation coupled with REED in-situ separation of 100% PHWS continued unhindered with just urea and K2HPO4 added reaching a productivity of 1.31 g/L/h butyric acid production and 97% sugars utilization

Acknowledgement
The authors wish to thank the Commission of the European Communities for the financial support of this work under SUPRABIO project (FP7-cooperationproject no 241640).