H₂S-FORMATION
UNDER VARYING FLOW CONDITIONS IN FORCE MAINS

* Grundfos
**Aalborg University

Experimental Setup

The experiments were carried out in a sewer test facility at Aalborg University, Denmark. The test facility is supplied with fresh waste water from the town of Fjellerup inhabiting approximately 2000 citizens. The test facility contains a 1000 m PE force main, diameter 50 mm, divided into 100 m sections each with an individual sample port. A schematic of the test setup can be seen in figure 2.

Prior to pumping the waste water into the force main and registering the flow the waste water had passed two separate settling reservoirs (each 100 l). In order to maintain a specific flow for ½ hour a loop was constructed, connecting one 100 m section back to the pump by flexible suction hoses. Fresh waste water could then be introduced into the system and cycled until a formation rate was obtained. The loop is illustrated by the four valves (green = open, red = closed) and green arrows in figure 2. The biofilm in the setup was established at a flow rate of 2.1 m³·h⁻¹ (shear stress of 1 N·m⁻²).

Waste water samples were taken at the sampling port marked in figure 2 with a syringe and then injected into zinc-acetate immediately. The sulfide concentration was then measured spectrophotometric by the methylene blue method (Cline, 1969). Area specific sulfide formation rates were calculated by linear regression and related to pipe surface area.

References

Results

As seen in figure 3 the sulfide formation rate depends on the shear stress (r) as expected. The rate at no flow (r = 0) was estimated to 0.13 g·m⁻²·h⁻¹ and increasing with the shear stress. At higher shear stresses the rate levels out at a max rate of fₘₐₓ = 0.38 g·m⁻²·h⁻¹.

A Michaelis-Menten like equation was fit to the data yielding the following expression, with an R²-squared value of 0.59:

\[\frac{r}{r_{\text{max}}} = \frac{r_{\text{max}}}{K_{\text{m}} + r} \]

The nonlinear trend indicates that it is possible to control sulfide formation based on flow variations. At shear stresses > 0.4 N·m⁻² the transport time can be reduced significantly without increasing the sulfide formation rate; thus decreasing the total formed amount of sulfide. The low Kₘ-value indicates that the maximum formation rate is reached fast and this is possible to benefit from even at low shear stresses.

With the knowledge of how flow variations influence sulfide formation it is possible to find an optimal duty point that takes both energy consumption and sulfide formation into account. This will help decrease the overall resource cost of sulfide abatement.

Conclusion

- A correlation between shear stress and sulfide formation rate was found in the shape of a growth curve
- A half-saturation constant of 0.018 N·m⁻² indicates that a constant sulfide formation rate is reached already at low shear stresses
- This knowledge opens up the possibility to design pumping strategies to reduce overall costs in sulfide abatement