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SIMPLICIAL MODELS FOR TRACE SPACES

MARTIN RAUSSEN

ABSTRACT. Directed Algebraic Topology studies topological spaces in which certain di-
rected paths (d-paths) – in general irreversible – are singled out. The main interest con-
cerns the spaces of directed paths between given end points – and how those vary under
variation of the end points. The original motivation stems from certain models for con-
current computation. So far, spaces of d-paths and their topological invariants have only
been determined in cases that were elementary to overlook.
In this paper, we develop a systematic approach describing spaces of directed paths – up
to homotopy equivalence – as prodsimplicial complexes (with products of simplices as
building blocks). This method makes use of certain poset categories of binary matrices
and applies to a class of directed spaces that arise from a class of models of computation;
still restricted but with a fair amount of generality. In the final section, we outline a gen-
eralization to model spaces known as Higher Dimensional Automata.
In particular, we describe algorithms that allow to determine not only the fundamental
category of such a model space, but all homological invariants of spaces of directed paths
within it. The prodsimplical complexes and their associated chain complexes are finite,
but they will, in general, have a huge number of generators.

1. INTRODUCTION

1.1. Background. With motivations arising originally from concurrency theory within
Computer Science, a new field of research, directed algebraic topology, has emerged;
for a comprehensive overview, we refer to the recent book by M. Grandis [12]. Its main
characteristic is, that it involves spaces of ”directed paths” (or timed paths, executions):
these directed paths can be concatenated, but in general not reversed; time is not re-
versable.

A particular model for concurrent computation, calledHigher Dimensional Automata
(HDA) was introduced by V. Pratt [21] back in 1991. Mathematically, HDAs can be de-
scribed as (labelled) pre-cubical sets [2, 1] with a preferred set of directed paths (respect-
ing the natural partial orders) in any of the cubes of the model; (di-)homotopies of such
directed paths have to respect the order along a deformation [7].

Compared to other well-studied concurrency models like labelled transition systems,
event sturctures, Petri nets etc. (for a survey on those cf. [28]), it has been shown by
R.J. vanGlabbeek [27] that Higher Dimensional Automata have the highest expressivity;
on the other hand, they are certainly less studied and less often applied so far.

All concurrency models deal with sets of states and with sets of execution paths (with
some further structure). The interest is mainly in the latter; but typically, it is difficult to
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2 MARTIN RAUSSEN

get an overview and to infer valuable information about the execution space from the
state space model.

A general framework for topological spaces with directed paths was defined and in-
vestigated as the category of d-spaces. The objects are topological spaces with a pre-
ferred set of d-paths; the morphisms are the continuous maps preserving d-paths; cf. in
particular [11, 10, 12]. Grandis investigates in particular the fundamental category (gen-
eralising the fundamental group) of d-spaces. This made it interesting to investigate
how spaces of d-paths (with given fixed end points) vary under variation of these end
points [24] and how this gives rise to suitable decomposition of the state space into
“components”[5, 9].

General topological properties of spaces of d-paths and of traces (=d-paths up to
monotone reparametrizations [4, 25] in semi-cubical complexes were investigated in
[26]. But so far, apart from low-dimensional examples with convincing drawings, there
have been very few explicit examples of actual computations of spaces of such traces
(for an attempt in dimension two, cf. [22]); let alone a general method to perform such
computations.

It is the aim of this article to make the homotopy types of trace spaces computable for
a restricted class of Higher Dimensional Automata – those arising from the semaphore
or PV-models introduced by E.W. Dijkstra [3] back in 1968. The state spaces for such
models are complements of a number of hyperrectangular “holes” in a partially ordered

hypercube~In. We describe trace spaces for these models explicitly as finite-dimensional
prodsimplicial complexes [18] (with products of simplices as their building blocks) with
the nerve of a particular category as barycentric subdivision. This makes it – at least in
principle, the complexes may have very many cells – possible to calculate algebraic
topological invariants of such trace spaces. For applications in concurrency, it is already
very important to know the Betti number β0 and to get hold on the connected compo-
nents of a trace space; traces in each component will always lead to the same result in
a concurrent computation. We will finally hint on how to extend our results to general
HDA.

The overall philosophy reminds a bit of the analysis of the topology of path spaces
in CW-complexes in Milnor’s article [20]: Also the spaces of d-paths in a pre-cubical
complex with given end points are equi locally convex (ELCX) [26] and thus locally
contractible; for the PV-models analysed here, the contractible subsets can be described
explicitly (by a blend of order and combinatorics).

1.2. Structure and overview of results. PV-models [3] are a particular class of models
for linear concurrent computations with semaphores, a particularly simple, but instruc-
tive class of Higher Dimensional Automata. These models are introduced in Section 2;
the state space for such a model is embeddeded (including the partial order) in a hy-

percube ~In. To get going, we define certain subspaces of the model spaces and show
that the space of d-paths within each such subspace (for simplicity, from the bottom 0
to the top 1) is empty or contractible by a specific contraction making use of the partial
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order. Moreover we show, that every such d-path is contained in at least one of these
subspaces.

This allows us in Section 3 to define a poset category C(X)(0, 1) indexing the spaces
of d-paths in X (for simplicity, with paths starting at 0 and ending at 1 described above
and their intersections. That category is naturally isomorphic to a subcategory of a
product of a number of poset categories of non-empty subsets of the positive integers
[1 : n] less than or equal to n. A topological realization of this subcategory can thus be
modelled on products of simplices and gives rise to a prodsimplicial complex [18]. Us-
ing standard methods (nerve lemma, projection lemma etc., cf. [18]), we show that the
space of d-paths (or rather traces, i.e, d-paths modulo monotone reparametrizations

[4]) ~T(X)(0, 1) in such a model space is in fact homotopy equivalent to an explicit prod-
simplicial complex T(X)(0, 1) that arises as geometric realization of the poset category
C(X)(0, 1) – with the nerve ∆(C(X)(0, 1)) as barycentric subdivision.
It is the aim of Section 4 to achieve an explicit description of the index category. To

this end, it is necessary to decide, for every of the subspaces mentioned above, whether
it is empty or not, i.e., whether there exists a d-path within it from bottom to top. Each
such subspace can be described as the complement of a number of homothetic hyper-
rectangles (with faces parallel to the coordinate planes) extending the original holes;
it turns out that it is enough to find out whether there exist deadlock points (the only
d-path with a deadlock as source is trivial) in these extended models; a combinatorial
search algorithm for deadlocks was described in [6]. The outcome of a systematic search
for deadlocks (in all extended models) is a set D(X)(0, 1) ofminimal non-faces – all of di-

mension n− 1) – of the prodsimplicial complex T(X)(0, 1) within the complex (∆n−1)l .
The maximal faces of T(X)(0, 1) can now be determined via minimal transversals in the
associated hypergraph.

The explicit determination of the complex T(X)(0, 1) thus achieved makes the calcu-

lation of algebraic topological invariants of the trace space ~T(X)(0, 1) possible. Even
if, for complicated model spaces, the “curse of dimensionality” might prohibit explicit
calculations, it will still be interesting and possible to study the change of invariants
under change of end points (in rounds of computation; compare [14] and other sources
in distributed computing for this point of view).

In Section 5, we describe for this purpose the changes that become necessary when
one investigates spaces of traces with source and target different from top and bottom
(either points or also subsets of sources and targets). This is essential for the study of
topology change along a state space model and also for inductive calculations. A partic-
ularly important case, semaphores with arity one (the semaphore obstructions prohibit
all but one process to proceed) are finally dealt with. These models come equipped
with discrete trace spaces that can be described by sets of (order) compatible permuta-

tions within (Σn)k – for k such semaphores.
The final Section 6 takes first steps in generalizing the methods described so far. Dijk-

stra’s PV-models can easily be generalized to a state space that is a product of digraphs
with “hyperrectangular holes” modelling processes that may branch, merge and loop.
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For these, the topology of the trace space can be determined in two steps: First deter-
mine (the components of) the traces in the product of digraphs (discrete, a product of
trace spaces of the 1-dimensional digraphs) – without holes; then, for each of these com-
ponents, one can pull back (or “unloop”) to a state space, including holes, of the type
previously investigated. It will still have to be investigated how to unloop in a coherent
manner in order to reuse calculations (of deadlocks etc.) performed at earlier steps. For
general HDA (modelled on pre-cubical sets), it is no longer possible to use the explicit
contraction method for specific subspaces yielding local contractability used in this ar-
ticle. Instead, it is probably necessary to use the method described in [26] with a higher
combinatorial complexity still to be sorted out.

2. MODELS OF COMPUTATION AND SUBSPACES

2.1. A simple higher dimensional automaton. To start with, we analyse trace spaces in
the following simple situation: A (linear) schedule for each of a number of n individual

processors Pj, 1 ≤ j ≤ n, is modelled on the directed interval~Ij = [0, 1]. On subintervals

Iij ⊆ Ij, 1 ≤ i ≤ l, there is potential conflict with the schedules of the othere processors.

These subintervals are supposed to be open in the subspace topology; in particular,
closed and half-closed intervals occur only with 0, resp. 1 as boundaries. We use the

notation aij = inf Iij , b
i
j = sup Iij .

The state space for concurrent executions of n linear processes is the space X =
~In \ F ⊂ ~In with the forbidden region F =

⋃l
i=1 R

i; each Ri is the “homothetic” open

hyperrectangle Ri = ∏n
j=1 I

i
j (with faces parallel to the coordinate hyperplanes). The

forbidden region F models conflicts and may not be entered. The space X inherits a

partial order ≤ from the componentwise partial order ≤ on ~In.
We study compound schedules (execution paths) in such a state space X: A d-path

in X is a continuous path p : ~I → X that is continuous and order-preserving, i.e., each

coordinate πj ◦ p : ~I → X ⊂ ~In → ~I, 1 ≤ j ≤ n, is weakly increasing. The space ~P(X)(c,d)
consists of all d-paths in X starting at c ∈ X and ending at d ∈ X; in particular, these d-

paths avoid the “forbidden region” F ⊂ ~In. Consult e.g. [13, 6] for detailed descriptions.

As a topological space, ~P(X)(c,d) is given the subspace topology inherited from the
space P(X)(c,d) = [(I, 0, 1); (X, c,d)] of all paths in X from c to d in the compact-open
topology (= uniform convergence topology).

Reparametrization equivalent d-paths [4] in X have the same directed image (= trace)
in X. Dividing out the action of the monoid of (weakly-increasing) reparametrizations

of the parameter interval~I, we arrive at trace space ~T(X)(c,d) [4, 25] which is shown in

[26]to be homotopy equivalent to path space ~P(X)(c,d) for a far wider class of directed
spaces X; in the latter paper, it is also shown that trace spaces enjoy nice properties; e.g.,
they are metrizable, locally compact, locally compact, and they have the homotopy type
of a CW-complex.
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It is the aim of the present paper to describe and analyze a combinatorial/topological
model of both spaces of d-paths and traces in a model space X (up to homotopy equiv-
alence) in order to make calculations of their algebraic topological invariants feasible.

2.2. Subspaces of the model space. We will now describe certain subspaces of X and
then prove that associated spaces of d-paths within these subspaces are either empty or
contractible.

Notation: For a real interval I and a real number x we write x < I if and only if x < t

for all t ∈ J. Likewise we understand >,≤,≥. ai = [ai1, . . . , a
i
n],bi = [ai1, . . . , a

i
n] ∈ In

denote the lowest, resp. upmost vertices of hyperrectangle Ri. ↓ c := {x ∈ X| x ≤ c}
denotes the set of elements “below” c ∈ X; not all of them can necessarily reach c by
a d-path; likewise ↑ c = {x ∈ X| c ≤ x} denotes the set of elements above c. ∂+ ↓ c
denotes the intersection of the upper boundary {x ∈↓ c| ∃1 ≤ i ≤ n : xi = ci} of the
hyperrectangle with upmost vertex in c with X.

Definition 2.1. (1) For 1 ≤ i ≤ l, 1 ≤ ji ≤ n, let

Xj1,··· ,jl := {x ∈ In | ∀i : xji < Iiji or ∃k : xk > Iik} ∩ X.

(2) For non-empty subsets Ji ⊆ [1 : n], 1 ≤ i ≤ l, let

XJ1 ,··· ,Jl := {x ∈ In | ∀i : xiji < Iiji , ji ∈ Ji, or ∃k : xk > Iik} ∩ X.

For later use, we note an equivalent formulation of these conditions:

(1) x ∈ X, ∀i : x ≤ bi ⇒ xji < Iiji ;

(2) x ∈ X, ∀i : x ≤ bi ⇒ xji < Iiji(for all j ∈ Ij.)

Remark 2.2. An execution path in Xj1,··· ,jl has the following characterization: Processor

ji has not yet reached the “conflict” interval Jiji when one of the others, say ki, has left

“its” corresponding conflict interval Jiki
.

Example 2.3. In both rows in Figure 1, X = ~I2 \ F is the complement of the black squares.
The shaded areas show, in both cases, the subspaces X11,X12,X21, resp. X22. Remark

that ~P(Xij)(0, 1) = ∅ occurs only in the second row – and only for i = 1, j = 2.

Example 2.4. In Figure 2 above, X = ~I3 \~J3 with ~J ⊂ ~I an interior open interval. Apart

from the forbidden region “black box”~J3 with upper corner b, you see the shaded areas
Xj ∩ ∂+ ↓ b, 1 ≤ j ≤ 3. Remark that every pair of these areas intersect, whereas the

intersection of all three is empty. As a consequence, ~P(XJ)(0, 1) = ∅ for ∅ 6= J ⊆ [1 : 3]
if and only if J = [1 : 3].

Lemma 2.5. (1) Xj1,··· ,jl ⊂ X for all 1 ≤ i ≤ l, 1 ≤ ji ≤ n.
(2) XJ1 ,··· ,Jl =

⋂
ji∈Ji Xj1,··· ,jl .
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FIGURE 1. X is the complement of the black boxes. Xij, 1 ≤ i, j ≤ 2, are
represented by the shaded areas.

FIGURE 2. Intersections of Xi with the upper boundary ∂+ ↓ b of the box
with upper corner b.

(3) If aij = 0, then 0 6∈ Xj1,··· ,jl for ji = j; in particular, there is then no d-path (trace) in

Xj1,··· ,jl starting at 0.

�
2.3. Restricted path spaces are empty or contractible. We consider the binary (maxi-
mum) operation ∨ on Rn given by a∨ b = [max(a1, b1), . . . , max(an, bn)] and observe as
a consequence of Definition 2.1:

Lemma 2.6. (1) Xj1,...,jl is closed under ∨ for every choice ji ∈ [1 : n], i ∈ [1 : l].
(2) Intersections of ∨-closed sets are ∨-closed.
(3) XJ1 ,...,Jl is closed under ∨ for every collection of non-empty subsets Ji ⊆ [1 : n],

1 ≤ i ≤ l.

�
Lemma 2.6 is no longer true if one of the sets Ji may be empty! A similar result holds

for the binary minimum operation ∧ given by a ∧ b = [min(a1, b1), . . . , min(an, bn)].
The next observation is essential for our purposes:

Proposition 2.7. (1) Let A1 ⊆ A ⊆ X, a ∈ A, and A× A ⊆ Y ⊆ X× X.
Let ∗ : Y → X denote a (continuous) d-map, (i.e., x1 ≤ x2, y1 ≤ y2, (x1, y1), (x2, y2) ∈
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Y ⇒ x1 ∗y1 ≤ x2 ∗y2) satisfying a ∗ a = a, A ∗A ⊆ A, and (↑a∩ ↓A1)∗ ↓A1 ⊆ A1.

Then trace space ~T(A)(a, A1) is either empty or contractible.

(2) Let Ji ⊆ [1 : n], 1 ≤ i ≤ l, c,d ∈ XJ1,...Jl . Then the trace spaces ~T(XJ1 ,...Jl)(c,d) and
~T(XJ1 ,...Jl)(c, ∂+ ↓d) ∩ XJ1,...,Jl) are either empty or contractible.

Likewise, it can be shown that ~T(XJ1 ,...Jl)(∂− ↑ c ∩ XJ1,...,Jl , a) is empty or contractible
using the operation ∧.
Proof. (2) follows from (1) and Lemma 2.6 with ∗ = ∨.
To prove (1), we show first that ~P(A)(a, A1) is either contractible or empty. If ~P(A)(a, A1)
is non-empty, then, for any pair p, q ∈ ~P(A)(a, A1), let H(p, q) : ~P(A)(a, A1) × I →
~P(A)(a, A1) be given by Ht(p, q)(s) := q(s) ∗ p(ts), t ∈ I. Remark that H0(p, q)(s) =
q(s) ∗ a = q(s),Ht(p, q)(0) = a ∗ a = a,Ht(p, q)(1) = q(1) ∗ p(t) ∈ A1 and that
H1(p, q)(s) = q(s) ∗ p(s). Thus H(p, q) defines an increasing d-homotopy [11] q 7→
p ∨ q between d-paths in ~P(A)(a, A1). Likewise, H(q, p) is an increasing d-homotopy
p 7→ p ∨ q. Their concatenation G(q, p) = H−(q, p) ∗ H(p, q) (orientations are reversed
for the first d-homotopy) is a “zig-zag” d-homotopy from q to p. The map G(−,−)
defines a continuous section of the end point map (~P(a, A1))I → ~P(a, A1) × ~P(a, A1)
associating to a pair (q, p) the d-homotopy G(p, q).

Given an arbitrary p ∈ ~P(A)(a, A1), the map G(−, p) : ~P(a, A1) × I → ~P(a, A1)
is a contraction of ~P(a, A1) to p. By [26], Proposition 2.16, the trace space ~T(a, A1) is

homotopy equivalent to the space of d-paths ~P(a, A1) and thus also contractible. �

Remark 2.8. If Ji = [1 : n] for at least one i, then ~T(XJ1 ,··· ,Jl)(0, 1) is always empty; in this

case, condition (2) from Definition 2.1 amounts to x ≤ bi ⇒ x ≤ ai. But every d-path

from 0 to 1 needs to pass through the region ↓bi \ (↓ai) inbetween.
For other end point conditions, this is no longer true in general: for example, if y

is reachable from 0 and if y ≤ ai, then obstruction Ri does not play any role for d-
paths ending at y, and Ji = [1 : n] may occur as index set for a non-empty space
~T(XJ1 ,...Jl)(0, y).

The trace spaces considered above cover the total trace space: With notation as in
Proposition 2.7, we obtain:

Lemma 2.9. For any c,d ∈ X,

• ~T(X)(c,d) =
⋃

[1:n]l
~T(Xj1,··· ,jl)(c,d).

• ~T(X)(c, ∂+(↓d)) =
⋃

[1:n]l
~T(Xj1,··· ,jl)(c, ∂+(↓d)).

Proof. We give the proof for the first statement: For a given d-path p = [p1, . . . , pn] ∈
~P(X)(c,d) ⊆ ~P(~In)(c,d) and 1 ≤ i ≤ l, choose a minimal ti such that there exists
ki ∈ [1 : n] with pki(ti) = b̃iki := min(biki , di). If b̃

i
ki
≤ aiki , then ji ∈ [1 : n] can be chosen

arbitrarily; otherwise choose si < ti such that pki(]si, ti[) =]aiki , b̃
i
ki
[. Since p(t) 6∈ Ri for
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every t and pj(t) < b
j
j for all (j, t) with t < ti, there exists ji such that pji(t) ≤ aiji for

si < t < ti and hence for t < ti. In conclusion, p ∈ ~P(Xj1 ,··· ,jl)(c,d). �
Remark 2.10. In view of Lemma 2.5, it is enough to consider all index sets (j1, . . . , jl) such
that aiji > 0; likewise (J1, . . . , Jl) such that aiji > 0 for all ji ∈ Ji.

In the following Section 3, we need a cover of trace space by open subsets. Therefore,
we carefully augment the spaces XJ1,··· ,Jl : For every 1 ≤ i ≤ l, 1 ≤ j ≤ n, choose 0 < εij
such that aij < akj , b

k
j ⇒ aij + 2εij < akj , b

k
j .

Definition 2.11. (1) Yj1,...,jl := {x ∈ In | ∀i : xji < aiji + 2εiji or ∃k : xk > bik} ∩ X ⊃
Xj1,...,jl .

(2) YJ1 ,··· ,Jl =
⋂

ji∈Ji Yj1,··· ,jl ⊃ XJ1,··· ,Jl .

Proposition 2.12. Suppose that, for every 1 ≤ j ≤ n, no upper boundary bij is a lower boundary

akj ; i.e., that {aij}i ∩ {bij}i = ∅ for every j.

(1) There exists a d-map ϕ : X → X (continuous and order preserving) and a d-homotopy

[11] Φ = (Φt) : X ×~I → X, ϕ → idX keeping Xj1,··· ,jl pointwise fix that satisfy

ϕ(YJ1 ,...,Jl) ⊆ XJ1,...,Jl and even Φ(YJ1 ,...,Jl × I) ⊆ XJ1 ,...,Jl for all (J1, . . . , Jl) ∈ [1 : n]l .
(2) Xj1,··· ,jl is a deformation retract of Yj1,··· ,jl .
(3) XJ1 ,··· ,Jl is a deformation retract of YJ1 ,··· ,Jl .

Proof. Choose piecewise linear and weakly increasing reparametrizations ϕj : ~I →
~I, 1 ≤ j ≤ n, of the unit interval I that are the identity outside the intervals ]aij, a

i
j + 2εij[

and that map [aij, a
i
j + εiji ] constantly to a

j
i . The product ϕ = ∏n

j=1 ϕj : ~I
n → ~In restricts

to a map ϕ : X → X such that ϕ(Yj1,...,jl) ⊆ Xj1,...,jl and ϕ(YJ1 ,...,Jl) ⊆ XJ1 ,...,Jl .
The linear homotopy Φ : ϕ → idIn that connects ϕ and the identity map is a d-

homotopy that restricts to d-homotopies on the spaces Yj1,...,jl and YJ1,...,Jl ; it induces
homotopies between the identity map and the maps induced by the restrictions of ϕ on
associated trace spaces. �
Corollary 2.13. (1) ~T(YJ1 ,··· ,Jl)(c,d) is contractible, resp. empty, if and only if

~T(XJ1 ,··· ,Jl)(c,d) is contractible, resp. empty;

(2) ~T(YJ1 ,··· ,Jl)(c, ∂+ ↓d) is contractible, resp. empty if and only if ~T(XJ1 ,··· ,Jl)(c, ∂+ ↓d)
is contractible, resp. empty.

Proof. Immediate from Lemma 2.7 and Proposition 2.12. �
Remark 2.14. It should also be possible to exploit the max-operation ∨ for the definition
and analysis of (future) components [5, 9] as follows: x, y ∈ X are elementarily future

related if, for every z1, z2 with ~P(X)(x, zi) 6= ∅ 6= ~P(X)(z1 , y) : z1 ∨ z2 ∈ X; consider
the equivalence relation future equivalent generated by symmetric and transitive closure.
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3. (PROD)SIMPLICIAL MODELS FOR TRACE SPACES

In this and the next Section 4, we concentrate on an investigation of trace spaces
~T(X)(0, 1) from the bottom vertex 0 to the top vertex 1 of X ⊆ ~In under the further

simplifying restiction that all forbidden hyperrectangles Ri ⊂ F are contained in the
interior of In. The necessary modifications arising for more general state spaces and for

trace spaces of type ~T(X)(c,d), resp. ~T(X)(c, ∂+(↓d)) will be discussed in Section 5.

3.1. The index category C(X)(0, 1).

3.1.1. A matrix representation of a power poset. The index multisets (J1, · · · , Jl) with Ji ⊆
[1 : n] considered in the previous Section 2 may be viewed as elements of the power set

P([1 : l]× [1 : n]) ∼= (P([1 : n]))l . Elements of that power set can be encoded by their
characteristic functions which can be viewed as binary l × n-matrices:

Let Ml,n = Ml,n(Z/2) denote the set of all binary l × n-matrices – with 2ln elements.
Componentwise logical or (∨), resp. logical and (∧) define addition and multiplication
on Ml,n. The total order on Z/2 given by a ≤ b unless (a = 1 and b = 0) extends to
a componentwise given partial order ≤ on Ml,n. With this partial order defining the
morphisms, Ml,n will be viewed as a poset category.

There is a natural order-preserving bijection between the subsets of [1 : l] × [1 : n]
(elements of the power set P([1 : l]× [1 : n]) with partial order given by inclusion) and
elements in Ml,n given by

(3) J = (J1, . . . , Jl) 7→ MJ = (mJ
ij), m

J
ij = 1⇔ j ∈ Ji

with inverse M = (Mij) 7→ JM, j ∈ JMi ⇔ mij = 1.
Under this bijection, the relevant multisets J = (J1, . . . , Jl) with Ji 6= ∅, 1 ≤ i ≤ l,

correspond to matrices in the subset MR
l,n ⊂ Ml,n consisting of the (2n − 1)l matrices

such that no row vector is a zero vector. We view MR
l,n as a full subposet category within

Ml,n.

3.1.2. Subcategories and pasting functors. To ease notation, we will in the following write
~T(XM)(0, 1) instead of ~T(XJM )(0, 1). The relevant index category to consider here is the

full subposet category C(X)(0, 1) ⊂ MR
l,n consisting of all matrices M such that

• ~T(XM)(0, 1) is non-empty.

This index category C(X)(0, 1) gives rise to both a contravariant functor D and a

covariant functor E into Top: The functor D : C(X)(0, 1) → Top associates ~T(XM)(0, 1)
to the matrix M; inclusions in C(X)(0, 1) correspond to reverse inclusions in Top. The

functor E : C(X)(0, 1) → Top restricts from a functor E ln : Ml,n → Top; it associates

to M =J with (J1, . . . , Jl) – all Ji 6= ∅! – the standard simplex ∆|J1|−1 × · · · × ∆|Jl |−1 ⊂
R|J1| × · · · ×R|Jl | ⊂ (Rn)l ; R|Ji| is included in Rn as the subspace given by the equations

xj = 0, j 6∈ Ji. The functor E ln should be considered as a pasting scheme for the product of
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simplices (∆n−1)l ; the functor E becomes then a pasting scheme for a sub-prodsimplicial

complex [18] XM ⊆ (∆n−1)l to be explained below.

Remark 3.1. We prefer C(X)(0, 1) as indexing category to the nerve of the covering given
by the spaces Xj1,··· ,jl , since an intersection XM – in view of Lemma 2.5(2) – can arise
in many ways as intersection of the basic spaces Xj1,··· ,jl corresponding to matrices in
which every row is a unit vector; even as intersection of a varying number of the basic
covering sets. The nerve of that latter covering is bigger than necessary, it carries re-
dundant information since it does not take care of the product structure giving rise to
automatically commuting morphims. That nerve is in fact the barycentric subdivision
of C(X)(0, 1); cf. below.

3.2. Trace spaces and prodsimplicial complexes as colimits. Regarding these functors
as pasting schemes, we consider their colimits, which yield:

• colim(D) = ~T(X)(0, 1) – by Lemma 2.9;

• colim(E ln) = (∆n−1)l ;
• T(X)(0, 1) := colim(E) ⊂ colim(E ln) = (∆n−1)l is a prodsimplicial complex

(in the terminology of [18]) consisting of those products of simplices ∆|J1|−1 ×
· · · × ∆|Jl |−1 that correspond to tuples (J1, . . . , Jl) with MJ ∈ C(X)(0, 1); in other
words, the functor E is regarded as a pasting scheme for products of simplices,

one product for each non-empty space ~T(XM)(0, 1).

Remark 3.2. This prodsimplicial complex is not a general complex of morphisms in the

sense of [18], 9.2.4. Whether ~T(XJ1 ,···Jl)(0, 1) is non-empty cannot be decided by inves-

tigating whether all ~T(Xj1,···jl)(0, 1), ji ∈ Ji are non-empty. The topology of the complex
does not only depend on its 1-skeleton ([18], Proposition 18.1).

Comparing with colim(E ln) = (∆n−1)l , we obtain at once:

Lemma 3.3. The prodsimplicial complex T(X)(0, 1) is a subcomplex of (∂∆n−1)l ∼= (Sn−2)l ;
in particular, it has at most nl vertices and dim(T(X)(0, 1)) ≤ (n− 2)l.

Proof. From Remark 2.8, it follows that ~T(XM)(0, 1) = ∅ as soon as M has a row vector
consisting of digits one only; in particular, no product can have a (full) factor ∆n−1. The
complex (∂∆n−1)l has the number of vertices and the dimension given in the lemma. �

Example 3.4. Assume that the obstruction hyperrectangles Ri =]ai,bi[ have the prop-
erty bi < ai+1, 1 ≤ i < l; i.e., the holes are ordered with respect to the partial order
in Rn. This is the case in the first row of Example 2.3. It is not difficult to see in that

case that ~T(XM)(0, 1) = ∅ if and only if M has a row consisting of all 1 digits. As a

consequence, T(X)(0, 1) = (∂∆n−1)l ∼= (Sn−2)l in this case. Hence the bounds given in
Lemma 3.3 are sharp!
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3.3. Homotopy equivalences.

Theorem 3.5. Assume that, for every 1 ≤ i ≤ n, no upper boundary coordinate b
j
i is equal

to a lower boundary coordinate aki . Then trace space ~T(X)(0, 1) is homotopy equivalent to the

prodsimplicial complex T(X)(0, 1) ⊂ (∂∆n−1)l and to the nerve of the category C(X)(0, 1);
the latter simplicial complex arises as a barycentric subdivision of T(X)(0, 1).

Proof. First, we determine the homotopy colimits of the functors defining the pasting
schemes above. We apply the homotopy lemma (Theorem 15.12 in [18]) to the natu-
ral transformation Ψ : D ⇒ T from D to the trivial functor T : C(X) → Top which
sends every object into the same one-point space. Since the maps corresponding to Ψ
are homotopy equivalences at any object M in C(X)(0, 1) (from a contractible space
~T(XM)(0, 1) – by Proposition 2.7(2) – to a point), the map hocolimD → hocolimT in-
duced by Ψ is a homotopy equivalence by the homotopy lemma. By definition, hocolimT
is the nerve ∆(C(X)(0, 1)) of the indexing category.

The same argument applies also to the trivial natural transformation from E to T and
shows that hocolimE is also homotopy equivalent to the nerve ∆(C(X)(0, 1)) – which
is thus a barycentric subdivision of T(X)(0, 1).

Next, wewish to apply the projection lemma (Theorem 15.19 in [18]) – with two twists
– to the fiber projection maps hocolimD → colimD and hocolimE → colimE . If
applicable, that lemma ensures that these projection maps are homotopy equivalences.
Altogether, the maps discussed above fit to yield a homotopy equivalence

~T(X)(0, 1) = colim(D)← hocolim(D)→ hocolim(T )← hocolim(E )→ colim(E ) = T(X)(0, 1).

The first twist alluded to above consists in using, instead of the nerve diagram of the
covering given by the spaces Xj1,··· ,jl , the functors D, resp. E with indexing category

C(X)(0, 1), cf. Remark 3.1. For the functor E , we use moreover, that T(X)(c,d) has a
prodsimplicial and thus a CW-structure and Remark 15.20 in [18].

As to the functor D, we need to verify the conditions of the projection lemma: It was

shown in [26], that ~T(X)(0, 1) is paracompact – even under much weaker assumptions

to X. Furthermore, we may replace the cover given by the subspaces ~T(Xj1,...,jl)(0, 1) to
that given by the homotopy equivalent open subspaces ~T(Yj1 ,...,jl)(0, 1) from Definition
2.11, with the same colimit and a homotopy equivalent homotopy colimit. �

Remark 3.6. A modified version of Theorem 3.5 holds without assuming that the ob-
struction hyperrectangles are contained in the interior of In; also for trace spaces of type
~T(X)(c,d) and ~T(X)(c, ∂+ ↓ d) described in Section 2. The only necessary change is
a different description of the corresponding index category; this will be explained in
Section 5.
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4. DETERMINATION OF THE INDEX CATEGORY

To determine the prodsimplicial model T(X)(0, 1) of trace space ~T(X)(0, 1) (Theo-
rem 3.5), we need to describe the indexing category C(X)(0, 1) and hence to determine

which of the subspaces ~T(XM)(0, 1) are empty and which not.
It turns out that (non-)emptyness can be investigated by a method that was originally

designed for the detection of deadlocks and associated unsafe regions in models for the
simple Higher Dimensional Automata from Section 2.1 described in [6]. A deadlock in
X is an element x ∈ X that admits only the constant path as d-path with source x. The
unsafe region corresponding to x consists of all y ∈ X such that no d-path in X with
source y can leave the hyperrectangle spanned by y and x.

It will be shown that ~T(XM)(0, 1) = ∅ is equivalent to the existence of a deadlock ( 6=
1 within XM. This in turn depends on whether a certain set of inequalities – determined
by M – between coordinates of the obstruction hyperrectangles holds.

A simple-minded version of the procedure described here restricted to the case n = 2
was described earlier in [22].

4.1. Empty path spaces and deadlocks. Remember the notation convention: 1 ≤ i ≤ l
denumerates the obstruction hyperrectangles Ri; 1 ≤ j ≤ n denumerates the n coordi-
nate directions in Rn.

We begin with a “dual” look at the spaces XJ1,...,Jl from Definition 2.1, resp. XM from

(3) in Section 3.1. For each of the original forbidden hyperrectangles Ri = ∏n
j=1 I

i
j

(cf. Section 2), we define n extended hyperrectangles

(4) Ri
j =

j−1
∏
k=1

Īik × Iij ×
n

∏
k=j+1

Īik, 1 ≤ i ≤ l, 1 ≤ j ≤ n,

and Īik = [0, aik] ∪ Iik = [0, bik[, an interval with 0 as its lower boundary.

Remark 4.1. Each of the hyperrectangles Ri
j has the property that all apart at most one of

the coordinates of the lowest vertex are 0.

By negating (2) from Definition 2.1, one obtains immediately for every matrix M =
(mij) ∈ Ml,n:

Lemma 4.2. XM = ~In \⋃
mij=1 R

i
j. �

The following result shows that (non)-emptyness of the relevant trace spaces can be
established by checking a bunch of inequalities. For this, we have to find deadlocks in
the subspaces XM by identifying non-empty intersections of n extended hyperrectangles

among the Ri
j, mij = 1, and the associated unsafe regions.

Proposition 4.3. For M ∈ MR
l,n, the following are equivalent:

(1) M is not an object in C(X)(0, 1).
(2) ~T(XM)(0, 1) = ∅.



SIMPLICIAL MODELS FOR TRACE SPACES 13

(3) There is a map i : [1 : n]→ [1 : l] such that

mi(j),j = 1 for all 1 ≤ j ≤ n and
⋂

1≤j≤n R
i(j)
j 6= ∅.

(4) There is a such a map i with

a
i(j)
j < b

i(k)
j for all j, k ∈ [1 : n].

Proof. The equivalence of (1) and (2) follows from the definition of C(X)(0, 1). To estab-
lish equivalence of (3) and (4), note that an intersection of (homothetic) hyperrectangles
is non-empty if and only if each lower coordinate of one of the participating rectangles
is smaller than all corresponding upper coordinates. From Remark 4.1 we know that

all but one of the lower coordinates of the R
i(j)
j are zero; the requirement has only to be

checked for a
i(j)
j ; exactly what is required in (4).

Assuming (2), i.e., ~T(XM)(0, 1) = ∅, then 0must be contained in the unsafe region as-
sociated to a deadlock ( 6= 1) for some configuration of n forbidden hyperrectangles cho-
sen among the Ri

j, j ∈ Ji. (If a deadlock making 0 unsafe arises by a configuration con-

taining one or several of the original hyperrectangles Ri, extending it to some Ri
j,mij = 1,

will enlarge the compound obstruction and certainly again give rise to a configuration
with the same property. Hence, we may restrict attention to configurations consisting
of extended hyperrectangles only. It is important that the matrix M ∈ MR

l,n has no zero

row vector for this argument; cf. also Remark 4.4 below.) The existence of a deadlock

in XM is equivalent to the existence of a non-empty intersection
⋂

1≤j≤n R
i(j)
j [6], i.e., of a

map as given in (3).

On the other hand, granted (3), if
⋂

1≤j≤n R
i(j)
j 6= ∅, the intersection gives rise to a

deadlock e = [e1, . . . , en] 6= 1 in XM; in fact the coordinates ej of e are maximal among

the j-th coordinates of the R
i(j)
j ; in our case ej = a

i(j)
j , cf. [6]. The associated unsafe

region has as its lowest vertex the point in X the n coordinates of which are next to

maximal among these lower coordinates of the R
i(j)
j [6]. Now we use that the extended

hyperrectangles are special (cf. Remark 4.1), in the sense that all these coordinates (next
to maximal among the lower coordinates) are 0. Hence 0 is automatically in the unsafe
region associated to the deadlock e in XM! In particular, there is no d-path with source

0 leaving ↓c; this proves (2): ~T(XM)(0, 1) = ∅. �
Remark 4.4. In proving (2) implies (3) above, it is crucial that all index sets Ji are non-

empty. Otherwise, a number of extended hyperrectangles Ri
j might, together with some

of the original Ri, generate a deadlock with 0 in the unsafe region that does not arise
from a non-empty intersection of extended hyperrectangles. Below, you find an illustra-
tion for that phenomenon in dimension two:
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FIGURE 3. Deadlock arising from combination of extended and non-
extended rectangles.

4.2. Algorithmic Determination of C(X)(0, 1).

4.2.1. The map Ψ and its properties. We will also consider the following subset of binary
matrices:

• MC
l,n ⊂ Ml,n consists of the matrices such that every column vector is a unit vector

– with ln elements. Every such matrix M = M(i) represents the characteristic
function of the graph of some map i : [1 : l]→ [1 : n], cf. Proposition 4.3(3).

Define the map Ψ : Ml,n → Z/2 by Ψ(M) = 1 ⇔ ~T(XM)(0, 1) = ∅; equivalently,

Ψ(M) = 0⇔ M ∈ C(X)(0, 1) for matrices M ∈ MR
l,n.

Proposition 4.5. (1) Ψ is order-preserving; for M ∈ Ml,n, we have:
(2) Ψ(M) = 0 if M has a zero vector among its column vectors.
(3) Ψ(M) = 1⇔ there exists N ∈ MC

l,n with Ψ(N) = 1 and N ≤ M.

Proof. (1) If M ≤ M′ ∈ Ml,n, then ~T(XM′)(0, 1) ⊆ ~T(XM)(0, 1). If the latter set is
empty, the first set is empty, as well.

(2) Assume that the j-th column in M is the zero vector. Then no obstruction hy-
perrectangle is extended in direction j. Hence, all j-th lower coordinates chosen
from the extended hyperrectangles corresponding to M are strictly positive. In
particular, 0 is not contained in the unsafe region of any deadlock occuring in
XM; in particular, there exists a d-path from 0 to 1 since neither the face xj = 0
nor the upper boundary ∂+ ↓1 intersect any of the extended hyperrectangles.

(3) ⇐ is an immediate consequence of (1). In view of (2), we may assume that M
has no zero vector among its column vectors. The graph of a map i : [1 : n] →
[1 : l] satisfying (3) in Proposition 4.3 has as its characteristic function the matrix
M(i) ∈ MC

l,n with Ψ(M(i)) = 1 and M(i) ≤ M.
�

The determination of Ψ can thus be performed in two steps. First, we determine
the restriction of Ψ to the subset MC

l,n corresponding to maps i : [1 : n] → [1 : l]. In

particular, we determine the set of matrices (D for “dead”)

(5) D(X)(0, 1) := {M ∈ MC
l,n| Ψ(M) = 1}.
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Using this set D(X)(0, 1), we will then determine the set of matrices

(6) C(X)(0, 1) := {M ∈ MR
l,n| Ψ(M) = 0}.

describing the objects of the relevant index category.

4.2.2. Determination of D(X)(0, 1). As described in Section 4.1, the graph of a map i :
[1 : n]→ [1 : l] has a matrix M(i) ∈ MC

l,n as its characteristic function.

To a matrix M ∈ MC
l,n, we associate its row set R(M) := {1 ≤ i ≤ l| mi 6= 0} ⊆ [1 : l]

– indexing the non-zero rows mi of M. The row set R(M(i)) is equal to the image
i([1 : n]) ⊆ [1 : l].

The condition from Proposition 4.3(4) leads to consider the same upper bounds b
i(k)
j

for matrices M with the same row set R(M) = R ⊆ [1 : l]: To every of the ∑
min(n,l)
k=1 (nk) ≤

2l − 1 non-empty subsets R ⊆ [1 : l] of cardinality at most min(n, l) corresponds an

upper bound bR = [br11 , . . . , b
rn
n ] ∈ [0, 1]n with b

rj
j = mini∈R bij.

Ordering the j-th coordinates aij, resp. b
i
j of subinterval boundaries for

~Iij ⊂ ~Ij (e.g. by

a quicksort algorithm) gives rise to 2n (not necessarily well-determined) permutations

π0
j ,π

1
j ∈ Σl such that a

π0
j (1)

j ≤ · · · ≤ a
π0
j (n)

j and b
π1
j (1)

j ≤ · · · ≤ b
π1
j (n)

j . Furthermore, let

Cj : [1 : l] → [1 : l] be given by Cj(k) := max{r| 1 ≤ r ≤ l, a
π0
j (r)

j < b
π0
j (k)

j }, 1 ≤ j ≤ n.

Note that Cj(k) ≥ k for all j and that Cj is monotone; the maps Cj arise from sorting the

union {aij} ∪ {bij}.
For a subset B ⊆ [1 : l], the bound bB = [bB1 , . . . , b

B
n ] = [min bi11 , . . . , min binn ], ij ∈ B

corresponds to a multiindex (kB1 , . . . , k
B
n) ∈ [1 : l]n with π1

j (k
B
j ) = bj. For ∅ 6= B ⊆ [1 : l],

let R̃j(B) := π0
j (Cj(kBj )) = {i ∈ [1 : l]|aij < bBj } and Rj(B) = R̃j(B) ∩ B. From condition

(4) in Proposition 4.3, we conclude:

Lemma 4.6. A map i : [1 : n] → [1 : l] gives rise to a matrix M = M(i) ∈ D(X)(0, 1) if and
only if

i(j) ∈ Rj(i([1 : n])) for every 1 ≤ j ≤ n.

�
What is left is a method to determine the sets Rj(B) for every subset B ⊆ [1 : l] of

cardinality at most n: Starting from one-elements sets B, work your way incrementally
through all non-empty subsets B ⊂ [1 : l] with at most n elements. For a one element set

B = {i}, bB = bi. In general, determine bB using that bS∪T = min(bS,bT) for subsets
S, T ⊆ [1 : l] – this corresponds to taking theminima of the correspondingmulti-indices.
For the determination of the sets Rj(B), the following properties – in particular (4) – are
helpful:

Lemma 4.7. (1) If B = {i} is a one-element set, then Rj(B) = B for j ∈ [1 : n]. Hence

Ψ(M) = 1 for each of the l matrices M ∈ MC
l,n with a one-element row set R(M).
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(2) ∅ 6= B ⊆ C ⊆ [1 : l]⇒ R̃j(B) ⊇ R̃j(C), 1 ≤ j ≤ n.

(3) Rj(B ∪ C) = (Rj(B) ∩ R̃j(C)) ∪ (Rj(B) ∩ R̃j(C)).
(4) For k 6∈ B, we have

Rj(B ∪ {k}) =


Rj(B), bBj < akj ⇔ akj 6∈ Cj(bBj )
Rj(B) ∪ {k}, akj < bBj < bkj ⇔ akj ∈ Cj(bBj ),π1

j (k) > π1
j (k

B
j )

Cj(bkj ) ∩ Rj(B) ∪ {k}, bkj < bSj ⇔ π1
j (k) < π1

j (k
B
j )

.

Proof. (1) follows from (the proof of) Lemma 3.3; (2) is obvious. For (3), note that
Rj(B∪C) = (R̃j(B)∩ R̃j(C))∩ (B∪C) and use distributivity. (4) is an easy consequence.

�
4.2.3. Determination of C(X)(0, 1). From Proposition 4.5 and Lemma 4.6, we can con-
clude immediately:

Proposition 4.8. Let M ∈ MR
l,n.

(1) Ψ(M) = 1 if and only if there is a matrix N ∈ D(X)(0, 1) (cf. Lemma 4.6) such that
nij ≤ mij for all 1 ≤ i ≤ l, 1 ≤ j ≤ n;

(2) Ψ(M) = 0⇔ M ∈ C(X)(0, 1) if and only if, for every matrix N ∈ D(X)(0, 1), there
is a pair (i, j) ∈ [1 : l]× [1 : n] such that mij = 0, nij = 1.

�
Matrices that aremaximalwith respect to the partial order≤ on binarymatrices within
C(X)(0, 1) constitute the subset Cmax(X)(0, 1) ⊆ C(X)(0, 1).
To determine the matrices contained in these two sets, we consider (choice) subsets

C ⊆ [1 : l]× [1 : n] characterized by the property:
For every matrix N ∈ D(X)(0, 1) there exists (i, j) ∈ C with nij = 1. Remark that one

index (i, j) can count for several matrices N.
Functions mC = 1− χ(C) for such choices are exactly the characteristic functions for
matrices MC = (mij) ∈ C(X)(0, 1).

A choice C is minimal, if for every C′ ⊂ C there is a matrix N ∈ D(X)(0, 1) with
nij = 0 for every (i, j) ∈ C′. The function mC = 1− χ(C) for a minimal choice function

is a maximalmatrix MC ∈ Cmax(X)(0, 1).
We describe a simple-minded algorithm constructing Cmax(X)(0, 1) step by step given

D(X)(0, 1) = {D1, . . . ,Dp} starting with A0
max(X)(0, 1) with the matrix 1 consisting of

only 1s as the only element. Assume Ai−1
max(X)(0, 1) = {M1, . . . ,Mqi−1} to consist of the

maximal binary matrices M such that Nk 6≤ M for 1 ≤ k ≤ i− 1 < p.
Compare the matrices Ml ∈ Ai−1

max(X)(0, 1) to Ni. If Ni 6≤ Ml, then keep Ml un-

changed as an element of Ai
max(X)(0, 1); if Ni ≤ Ml , then replace Ml by the n matrices

M1
l , . . .M

n
l ∈ Ai

max(X)(0, 1): Mj
l arises from Ml by replacing the j-th entry 1 in Nl (which

is also 1 in Ml) by 0.
Assessing whether N ≤ M is easy, given N: form the binary product

∧
npq=1mpq; this

product is always over n entries.
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The maximal matrices in Cmax(X)(0, 1) correspond to the maximal simplex products

that are patched together in T(X)(0, 1) ⊂ (∆n−1)l while the matrices in D(X)(0, 1)
correspond to minimal non-faces in (∆n−1)l . The construction above reminds of a sim-
ilar construction of a simplicial complex K(F ) associated to a set system F used for
topological investigations of colouring problems, cf. e.g. [19]; in our case, we have the
product structure in the underlying category Ml,n as an additional feature.

Corollary 4.9. (1) The simplex product in T(X)(0, 1) corresponding to Mc ∈ C(X)(0, 1)
considered as an object in C(X)(0, 1) (cf. Section 3.2) has dimension (n− 1)l − |C|.

(2) dimT(X)(0, 1) = (n − 1)l −min |C| where C ranges over all choice subsets in [1 :
l]× [1 : n].

Proof. The simplex product corresponding to RMC has type ∏1≤i≤l ∆n−1−ci with ci =
{j| (i, j) ∈ C}. �
Corollary 4.10. The Lusternik-Schnirelmann category of trace space T(X)(0, 1) satisfies the
inequality cat(T(X)(0, 1)) ≤ |Cmax(X)(0, 1)|.
Proof. The prodsimplicial complexT(X)(0, 1) homotopy-equivalent to ~T(X)(0, 1) is cov-
ered by maximal products of simplices; there are |Cmax(X)(0, 1)| of those. As products
of simplices, they are contractible; they are deformation retracts of contractible open
neighbourhoods in T(X)(0, 1). �
Example 4.11. (1) X a square with two square holes as in Example 2.3, upper row:

D(X)(0, 1) consists of the two matrices

[
1 1
0 0

]
and

[
0 0
1 1

]
(deadlock only if one

extends in both directions from the same obstruction). There are four choices
C ⊂ [1 : 2] × [1 : 2]; and any of these is minimal and of cardinality 2. Hence

Cmax(X)(0, 1) = C(X)(0, 1) consists of the four matrices

[
0 1
0 1

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
,

and

[
1 0
1 0

]
with extensions that allow exactly one d-homotopy class around the

(extended) holes. The corresponding prodsimplicial complex T(X)(0, 1) consists
of four points of type (∆0)2.

(2) X a square with two square holes as in Example 2.4, lower row: This time,

D(X)(0, 1) consists of the three matrices

[
1 1
0 0

]
,

[
0 0
1 1

]
, and

[
0 1
1 0

]
: one addi-

tional deadlock configuration comes up with one extension for every hole. There
are only three choices C, all minimal and of cardinality 2 corresponding to the

matrices

[
0 1
0 1

]
,

[
1 0
0 1

]
, and

[
1 0
1 0

]
. T(X)(0, 1) consists thus of three points.

(3) X a square with three holes as in Figure 3: In this case,

D(X)(0, 1) = {
1 1
0 0
0 0

 ,

0 1
1 0
0 0

 ,

0 0
1 1
0 0

 ,

0 0
0 1
1 0

 ,

0 0
0 0
1 1

}.
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There are four minimal choices giving rise to the matrices in

Cmax(X)(0, 1) = {
1 0
1 0
1 0

 ,

1 0
1 0
0 1

 ,

1 0
0 1
0 1

 ,

0 1
0 1
0 1

}.
The complex T(X)(0, 1) consists of four points.

(4) X = ~In \~Jn as in Example 2.4: In this case, D(X)(0, 1) = {[1, 1, . . . , 1]}. The n
minimal choices correspond to the one row matrices with exactly one entry 0 in
Cmax(X)(0, 1). These matrices correspond to the maximal simplices in T(X)(0, 1)
= ∂∆n−1.

Corollary 4.12. ~T(~In \~Jn)(0, 1) ≃ ∂∆n−1. �

Previous attempts to prove Corollary 4.12 directly were much more complicated.

Example 4.13. The space X in the figure below shows a cube from which two wedges,
each of them composed of two rectangular boxes are removed. Remark that the two
wedges do not touch each other. The trace in that drawing from bottom to top is homo-
topic but not dihomotopic (homotopic through a 1-parameter deformation of d-paths)
to a trace on the boundary of the cube. A simple-minded analysis of this model in [23]
showed by a quite intricate argument that the trace space for this d-space (from bottom
to top) is not connected.

State space X Associated models for trace space
~T(X)(0, 1)

The general method described in this article yields a model for trace space ~T(X)(0, 1)
as a subspace of the 4-torus (∂∆2)4 ∼= (S1)4. It turns out by inspection that one can
handle the two wedges as one obstruction and therefore that trace space can be seen as
the union of five squares and a disjoint extra (“corner”) point in the two-torus
(∂∆2)2 = (S1)2. This subspace is of course homotopy equivalent to the disjoint union of

a wedge of circles and of an extra point: ~T(X)(0, 1) ≃ (S1 ∨ S1) ⊔ ∗.
It would be interesting to find more general methods for dimension reduction as the

one described above.
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4.2.4. A reformulation: Minimal transversals in hypergraphs. The search forminimal choices
in D(X)(0, 1) can be translated into a well-known and well-investigated problem in

combinatorics.1 The set D(X)(0, 1) may be considered as a hypergraph (with hyperedges
= simplices connecting a number of vertices; every matrix in D(X)(0, 1) defines a hy-
peredge) on the vertex set [1 : l]× [1 : n]. A minimal choice is then a minimal transversal
(or hitting set) of that hypergraph, i.e., it has nonempty intersection with every hyper-
edge and it is minimal with this property. Computing minmal transversals has many
applications (e.g., machine learning, indexing of databases, data mining and optimiza-
tion). There are several articles about algorithms for finding minimal transversals and
their complexity in the literature; cf. e.g. [17].

The hypergraph given by the matrices in D(X)(0, 1) has special properties: All hy-
peredges have the same cardinality n; even more so, they are graphs of functions from
[1 : n] to [1 : l]. This ought to simplify the setting.

4.3. Homology of the trace space. By Theorem 3.5, the homology of the trace space
~T(X)(0, 1) may be calculated as the homology of the associated prodsimplicial complex
T(X)(0, 1). Given the poset category C(X)(0, 1), this is the homology of a particular
chain complex C(X)(0, 1) with one generator for every product of simplices.

More precisely, let Ck(X)(0, 1) denote the free R-module generated by all matrices in
C(X)(0, 1) with (k + l) entries 1; R denotes the chosen ring. For a matrix M ∈ Ml,n with

mpq = 1, let Mpq be given by (mpq)ij =

{
mij (i, j) 6= (p, q)
0 (i, j) = (p, q)

.

The boundary operator ∂ on C(X)(0, 1) is then given by ∂(M) = ∑mpq=1(−1)|(p,q)|Mpq

with alternating sign: |(p, q)| = ∑
p−1
i=1 ∑n

j=1mij + ∑
q
j=1mpj − 1 takes account of the ones

in M preceeding mpq = 1.
It should be interesting to perform actual homology calculations in “real life” ex-

amples that give rise to huge chain complexes. The algorithms for the calculation of
homology in [16] by reduction of chain complexes (with field coeffectients) might be
helpful. Likewise a modification of the algorithms in [15] for the homology of cubical
complexes.

5. OBSTRUCTIONS ON THE BOUNDARY

5.1. Introduction. In Sections 3 and 4, we had assumed that all obstruction hyperrect-

angles Ri are contained in the interior of In. This assumption is not valid in many ap-
plications; we will now briefly describe how to modify the index category C(X)(0, 1) in
the general case; in fact, we will describe the index categories

• C(X)(c,d) with set of objects {M ∈ MR
l,n| ~T(XM)(c,d) 6= ∅} corresponding to

trace space ~T(X)(c,d) with traces starting at c and ending at d; and

1I would like to thank my colleague Leif Kjær Jørgensen, Aalborg University, for mentioning hyper-
graphs and their transversals to me.



20 MARTIN RAUSSEN

• C(X)(c, ∂+ ↓ d) with set of objects {M ∈ MR
l,n| ~T(XM)(c, ∂+ ↓ d) 6= ∅} cor-

responding to traces ending on the upper boundary of the box with d as upper
corner.

Remark 5.1. (1) Models for Higher Dimensional Automata have often obstructions
intersecting the boundary ∂In; those arrise always as soon as semaphores of an
arity r < n− 1 (at most r processors can proceed concurrently) are involved.

(2) The trace space ~T(X)(0, ∂+ ↓ 1) is interesting in the analysis of algorithms for
wait-free protocols (cf. e.g., [14]) in which all processors with at least one excep-
tion are allowed to “die”, i.e., cease to communicate. In this case, the accepting
states correspond to the points contained in ∂+ ↓1.

In the sameway as described in Section 3.1, thematrix poset categories C(X)(c,d) and
C(X)(c, ∂+(↓ d)) serve as pasting schemes that give rise to prodsimplicial complexes
T(X)(c,d) and T(X)(c, ∂+(↓ d)). Under the general conditions of Theorem 3.5, but
allowing obstruction hyperrectangles to intersect the boundary of [c,d], we obtain using
Proposition 2.7:

Theorem 5.2. (1) Trace space~T(X)(c,d) is homotopy equivalent to the prodsimplicial com-
plex T(X)(c,d) and to the nerve of the category C(X)(c,d).

(2) Trace space ~T(X)(c, ∂+(↓ d)) is homotopy equivalent to the prodsimplicial complex
T(X)(c, ∂+(↓d)) and to the nerve of the category C(X)(c, ∂+(↓d)).

�
For an algorithmic determination of these index categories (as in Section 4), we need

to describe several modifications of the matrix subsets D(X)(−,−) and C(X)(−,−)
with respective boundaries.

5.2. Which trace spaces are (non-)empty? In both cases, rectangles Ri that do not in-
tersect the box [c,d] become irrelevant. This can be handled by reducing the number of
rows in the matrices constituting the index categories: We separate

[1 : l] = [1 : l]in ⊔ [1 : l]out with i ∈ [1 : l]in ⇔ (1 ≤ j ≤ n ⇒ aij < dj, cj < bij) and let

l′ := |[1 : l]in|.
Remark 5.3. Comparing trace spaces with varying end points, it may be necessary to
take account of these irrelevant rectangles nevertheless. On the prodsimplicial side this
will result in taking a product with one or several simplices ∆n−1; cf. Section 5.4.

Lemma 5.4. Suppose aij ≤ cj. Then M 6∈ C(X)(c,−) for every matrix M ∈ MR
l ′,n with

mij = 1.

Proof. Supposing x ∈ XM and x ≤ bi implies xj < aij ≤ cj, i.e., x 6∈ [c, 1]; in particular,

~T(XM)(c,−) = ∅. �
Under these circumstances, we will thus only have to investigate matrices

(7) M ∈ M̄R
l ′,n with aij ≤ cj ⇒ mij = 0.



SIMPLICIAL MODELS FOR TRACE SPACES 21

We will deal with the easier case of the index category C(X)(c, ∂+(↓ d)) first. Proposi-
tion 4.3 has the following immediate modification:

Proposition 5.5. For M ∈ M̄R
l ′,n, the following are equivalent:

(1) M is not an object in C(X)(c, ∂+(↓d)).
(2) ~T(XM)(c, ∂+(↓d)) = ∅.

(3) There is a map i : [1 : n]→ [1 : l′] such that mi(j),j = 1 and
⋂

1≤j≤n R
i(j)
j 6= ∅.

(4) There is a map i : [1 : n]→ [1 : l′] with a
i(j)
j < b

i(k)
j for all j, k ∈ [1 : n].

Proof. The proof is an easy modification of the one given for Proposition 4.3. Note that a

deadlock on the boundary ∂+(↓d) is irrelevant for paths/traces in ~T(X)(c, ∂+ ↓d). �

For the analysis of C(X)(c,d) in general, we have to deal with obstruction hyper-
rectangles intersecting ∂+ ↓ d; this may also be the case for d = 1 for hyperrectangles
intersecting the boundary of In. For every such “intersection direction” 1 ≤ j ≤ n with
a hyperrectangle intersecting the j-th face xj = dj of ∂+ ↓ d, (i.e., such that there ex-

ists an i with bij > dj or bij = dj = 1), we introduce new obstruction hyperrectangles

R0
j = [0, 1]i−1 × [dj, 1]× [0, 1]n−i – no longer open; degenerate for dj = 1. In particular,

a0j = dj for these “intersecting directions”.

Proposition 4.3 can then be modified as follows:

Proposition 5.6. For M ∈ M̄R
l ′,n, the following are equivalent:

(1) M is not an object in C(X)(c,d).
(2) ~T(XR̃)(c,d) = ∅.
(3) There is a map i : [1 : n] → [0 : l′] such that i(j) 6= 0 ⇒ mi(j),j = 1 and such that⋂

1≤j≤n R
i(j)
j 6= ∅.

(4) There is a map i : [1 : n]→ [0 : l′] such that i(j) 6= 0⇒ mi(j),j = 1 and such thata
i(j)
j < b

i(k)
j for j, k ∈ [1 : n], i(j) > 0 or i(j) = 0, a0j = dj < 1;

b
i(k)
j = 1 for j, k ∈ [1 : n], i(j) = 0, a0j = dj = 1.

�
Compared to Proposition 4.3, remark that further intersections involving hyperrect-

angles R0
j need to be considered.

5.3. Modified Algorithms. The matrix representation from Section 4.2.1 needs a few
minor modifications. First of all, in both cases, only obstructions intersecting [c,d] need
to be taken care of, and this may reduce the number of rows from l to l′ in the matrices
to be considered. For the category C(X)(c, ∂+(↓d)), one may then proceed as in Section
4.2 – with the simplification that only matrices in M̄R

l ′,n (cf. (7)) need to be considered.
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5.3.1. Determination of D(X)(c,d). For a category of type C(X)(c,d), we replace the
matrix set MC

l,n by the set M̄C
l ′,n. A matrix M ∈ M̄C

l ′,n has the following properties:

• aij < cj ⇒ mij = 0;

• every column vector mj is either a unit vector or the zero vector 0;
• if mj = 0, then j is an intersection direction.

A matrix M ∈ M̄C
l ′,n codes the map iM : [1 : n] → [0 : l′], iM(j) =

{
i(j) mj = ei(j)
0 mj = 0

.

Vice versa, a (relevant) map i : [1 : n] → [0 : l′] comes with a characteristic matrix

M(i) = (mij) ∈ M̄C
l ′,n,mij = 1 ⇔ 0 < i(j) = i. With Ψ : M̄l ′,n → Z/2 defined as in

Section 4.2.1, we obtain the following analogue to Proposition 4.5:

Proposition 5.7. Amatrix M ∈ M̄R
l ′,n satisfies Ψ(M) = 1 if and only if there exists N ∈ M̄C

l ′,n
with Ψ(N) = 1 and N ≤ M.

We wish to determine Ψ(M) for M ∈ M̃C
l ′,n and, in particular, D(X)(c,d) :=

{M ∈ M̃C
l ′,n|Ψ(M) = 1}. For that purpose, one has to consider both the row set R(M) ⊂

[1 : l′] (cf. Section 4.2.2) and the column set C(M) ⊂ [1 : n] indexing the non-zero rows,
resp. columns of M. An analogue of Lemma 4.6 (again with bB = [bB1 , . . . , b

B
n ] and

bj = mini∈B bij) for a row set B ⊂ [1 : l′] reads:

Lemma 5.8. A map i : [1 : n]→ [0 : l′] gives rise to a matrix M = M(i) ∈ D(X)(c,d) if and
only if

(1) i(j) = 0(⇔ mj = 0)⇒ dj < b
rj
j or dj = b

rj
j = 1 and

(2) i(j) ∈ Rj(i([1 : n]) \ {0}).
The method described in Lemma 4.7 has to be extended: for a given non-empty (row)

subset B ⊂ [1 : l′], one determines a maximal column set C(B) ⊂ [1 : n] consisting of
those j ∈ [1 : n] that satisfy (1) above; this requires checking n (in)equalities. Next,

for every subset of C ⊆ C(B)the sets R̃j(B;C) := {i ∈ [1 : l′]|j 6∈ C ⇒ aij < bBj }
have to be determined – decrementally – as in Lemma 4.7; a zero column corresponds
to every j ∈ C. As in Proposition 4.6, we end up determining the set of matrices M ∈
D(X)(c,d) := {M ∈ M̄C

l ′,n| Ψ(M) = 1}.
Having found D(X)(c,d), we can determine the matrices in C(X)(c,d) :=
{M ∈ M̄R

l,n| Ψ(M) = 0} in the same way as described in Proposition 4.8; again, only

matrices in M̄R
l ′,n need to be checked.

5.4. Varying end points. By concatenation, traces σ ∈ ~T(X)(d,d′), τ ∈ ~T(X)(c′ , c) in-

duce continuous maps σ♯ : ~T(X)(c,d) → ~T(X)(c,d′) and τ♯ : ~T(X)(c,d) → ~T(X)(c′ ,d).
In order to find out “what happens” between d and d′, one has to study the effect

of these induced maps; it suffices to look at d-homotopy classes [σ] ∈ ~π1(X)(d,d′) of
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paths/traces σ ∈ ~T(X)(d,d′), cf. [24] and the discussion of the functor ~TX : ~D(X) →
Ho−Top from the double category ~D(X) associated to X there. Similarly, onemay anal-
yse what happens between ∂+ ↓d and ∂+ ↓d′; moreover, there are similar contravariant
versions “between c′ and c. For a discussion/determination of o-called components in
X ([5, 9, 24]), one would like to know which traces σ induce homotopy equivalences (or
at least bijections on sets of path components).

For brevity, we restrict to the first case, the concatenation map σ♯ : ~T(X)(c,d) →
~T(X)(c,d′). Assume that l′ of the hyperrectangles intersect [c,d] whereas l ≥ l′ intersect
[c,d′]. In order to compare, we will use the same larger index set [1 : l] in both cases.

A hyperrectangle Ri not intersecting [c,d] does not pose any conditions to the question
~T(XM)(c,d) 6= ∅ defining index categories; the corresponding i-th row in the matrix M
is irrelevant. As a result, the index category C(X)(c,d) ⊂ MR

l ′,n will be replaced by the

pullback

C̃(X)(c,d)

⊆
��

π // C(X)(c,d)

⊆
��

MR
l,n

π // MR
l ′,n

with π : MR
l,n → MR

l ′,n leaving out superfluous rows.

The pasting scheme corresponding to C̃(X)(c,d) gives rise to the prodsimplicial com-

plex T̃(X)(c,d) = T(X)(c,d) × (∆n−1)l−l ′ homotopy equivalent to T(X)(c,d).
The index category C(X)(c,d′) becomes then a subcategory of C̃(X)(c,d) with cer-

tain matrices eliminated; one needs to analyse the effect of the associated inclusion of
prodsimplicial complexes T(X)(c,d′) →֒ T̃(X)(c,d). This and the consequences for
components will be analysed in future work.

It is also relevant to ask is what happens if one digs an extra forbidden hyperrectangle
out of the state space X ⊂ In; interesting in particular for an inductive determination of
index categories and associated prodsimplicial models of trace spaces. Again, the asso-
ciated map between prodsimplicial models is a combination of a homotopy equivalence
(taking the product with a simplex) and an inclusion map reflecting the additional ob-
struction. The effect of this map (and the map induced on homology) has still to be
investigated more closely.

5.5. A particular case: Semaphores of arity one. Matters get simplified for an HDA
model in which every semaphore allows only a single process to proceed. In this case

the forbidden region F is a union of hyperrectangles Ri = ∏ Iij such that Iij = [0, 1] for
every 1 ≤ i ≤ l, except for two choices 1 ≤ j1(i), j2(i): Ii

jk(i)
= [ai

jr(i)
, bi

jr(i)
], r = 1, 2;

0 < ai
jr(i)

< bi
jr(i)

< 1. Note that every such semaphore gives rise to (n2) forbidden

hyperrectangles, and that k such semaphores hence produce l = k(n2) hyperrectangles.
In this case, we have:
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Proposition 5.9. (1) If ~T(XJ1 ,··· ,Jl)(0, 1) is non-empty, then every index set Jk has exactly
one element jk.

(2) ~T(X)(0, 1) is homotopy equivalent to a finite discrete space; its (contractible) connected

components are the non-empty ones among the spaces ~T(Xj1,···jl)(0, 1).
Proof. (1) Suppose Ji has at least two elements 1 ≤ j1 < j2 ≤ n for some 1 ≤ i ≤ l.

If one of them, say j1 6∈ {j1(i), j2(i)}, then aij1 = 0 and hence trace space is empty

by Proposition 4.3(1).
If {j1, j2} = {j1(i), j2(i)}, we define a map i : [1 : n] → [0 : l] with i(j1) =

i(j2) = i and i(j) = 0 for all other j. We check that condition (4) in Proposition

5.6 is satisfied: aij1 < bij1, a
i
j2

< bij2 , and bij = 1 for j1 6= j 6= j2.

(2) It follows from (1), that the subposet category C(X)(0, 1) has no non-trivial mor-
phisms, and that the prodsimplicial complex T(X)(0, 1) has dimension 0.

�
It remains thus to determine which of the spaces ~T(Xj1,···jl)(0, 1) are empty. Remark

that there are 2l, l = k(n2) such spaces – for every i, one may choose either j1(i) or
j2(i). State spaces corresponding to semaphores of arity one possess additional structure
(apart from giving rise to obstruction hyperrectangles of the type studied in Proposition
5.9) that we are now going to exploit:

Let us first consider a single semaphore of arity one given by intervals ]aj, bj[⊂ [0, 1],
1 ≤ j ≤ n. The associated forbidden region is the union F =

⋃
1≤j1,j2≤n,j1 6=j2

R(j1, j2) of
hyperrectangles R(j1, j2) = {x ∈ In| aji < xji < bji , i = 1, 2}. Remark that R(j1, j2) =
R(j2, j1); there are (n2) such hyperrectangles. As usual, let X = In \ F.
In the proof of the next result, wewill also need the extended hyperrectangles Rj1(j1, j2)

= {x ∈ In| xj2 < bj2 , aj1 < xj1 < bj1} and likewise Rj2(j1, j2); moreover, as in Section 5.2,

the degenerate hyperrectangles R0
j = [0, 1]j−1× {1} × [0, 1]n−j, 1 ≤ j ≤ n.

Proposition 5.10. The map ~x : Σn → ~T(X)(0, 1) from a discrete space Σn with n! elements
parametrized by permutations π : [1 : n]→ [1 : n] given by ~x(π)(t) = [x1(t), . . . , xn(t)] with

xπ(k)(t) =


0 t ≤ k−1

n

(nt− (k− 1)) k−1
n ≤ t ≤ k

n

1 k
n ≤ t ≤ n

is a homotopy equivalence.

Proof. Note that ~x(π) describes a d-path on the 1-skeleton of ~In – which does not inter-
sect F.

Let P2(n) denote the set of all 2-element subsets of [1 : n] (with n(n−1)
2 elements), and

let c : P2(n) → [1 : n] denote a choice function with the property c({j1, j2}) ∈ {j1, j2}. For
such a choice function c – determining in which order to pass the obstructions R(j1, j2)
– let Fc =

⋃
1≤j1,j2≤n,j1 6=j2

Rc(j1,j2)(j1, j2) and Xc = In \ Fc. By Theorem 5.2 and Proposition

5.9, the (contractible) components of ~T(X)(0, 1) correspond to those choice functions c

giving rise to non-empty trace spaces ~T(Xc)(0, 1).
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A choice function c gives rise to a relation on [1 : n] defined by j1 ≤c j2 if c(j1, j2) = j1
and its reflexive and transitive closure �c. If �c defines a total order on [1 : n], then this
total order is given by a permutation π ∈ Σn: π(1) �c π(2) �c · · · �c π(n). We claim

that ~T(Xc)(0, 1) 6= ∅ if and only if �c is a total order.
If �c is not a total order, then there is a chain j1 �c · · · �c jk �c j1 with k < n; let

jk+1, . . . , jn denote the remaining elements of [1 : n]. The extended, resp. degenerate
hyperrectangles Rj1(j1, j2), . . . Rjk(jk, j1), R

0
jk+1

, . . . , R0
jn
with non-empty intersection

{x ∈ In| aji < xji < bji , i ≤ k; xji = 1, i > k} give then rise to a deadlock x = [x1, . . . , xn],
i.e., xji = aji , i ≤ k; xji = 1, i > k.

Suppose now that �c is a total order. For every choice of n among the extended
and degenerate hyperrectangles Rjp(jp, jq), p �c q and R0

jr
, their intersection will be

empty: since there is no �c loop, the of union of all {jp, jq} corresponding to extended
hyperrectangles has at least one element j in common with the set {jr} corresponding to
degenerate hyperrectangles. An element x ∈ ⋂

Rjp(jp, jq) ∩
⋂
R0
jr
would have to satisfy

both xj < bj and xj = 1. Hence, all these intersections are empty, there are no deadlocks
in Xc. �

Let us now consider a state space corresponding to a collection of k semaphores of

arity one, i.e, X = In \ ⋃
1≤i≤k Fi, Fi =

⋃
1≤j1<j2≤n R

i(j1, j2). To every collection π =
(π1, . . . ,πk) ∈ (Σn)k of k permutations, we associate extended forbidden regions F̄i =⋃

1≤j1<j2≤n R
i
πi(j2)

(πi(j1),πi(j2)) with Ri
πi(j2)

(πi(j1),πi(j2)) =
{x ∈ In|xπi(j1) < bi

πi(j1)
, ai

πi(j2)
< xπi(j2) < bi

πi(j2)
} ⊃ Ri(πi(j1),πi(j2)), and the state

space Xπ = In \⋃
1≤i≤k F̄i . Then, with l = k(n2) and l choice functions c1, . . . , cl, we get:

~T(X)(0, 1) ≃ {(c1, . . . , cl)|~T(Xc1 ,...,cl)(0, 1) 6= ∅} ≃ {π = (π1, . . . ,πk)|~T(Xπ)(0, 1) 6= ∅}.
The first homotopy equivalence above is, as in the proof of the previous Proposition
5.10, a consequence of Theorem 5.2 and Proposition 5.9. The second homotopy equiva-
lence follows from Proposition 5.10: only those tuples of choice functions arising from
permutations can give rise to non-empty trace spaces.

Consider the set of all aij, b
i
j ∈ I, i ≤ k, 1 ≤ n boundary coordinates of contributing

semaphores. For every collection π = (π1, . . . ,πk) ∈ (Σn)k, we consider several order
relations on subsets of these real numbers:

• The natural order ≤, inherited from the reals, on numbers aij, b
i
j with the same

subscript (direction) j;

• bi
πi(j1)

� ai
πi(j2)

for 1 ≤ i ≤ k, 1 ≤ j1 < j2 ≤ n.

We call the collection π compatible if the transitive hull of these relations is a partial order.

Proposition 5.11. Let X = In \ F denote the state space corresponding to a collection of l

semaphores of arity one. Then ~T(X)(0, 1) is homotopy equivalent to the discrete space

{π = (π1, . . . ,πk) ∈ (Σn)k|π compatible}.
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Proof. We need to show: ~T(Xπ)(0, 1) 6= ∅ if and only if π is compatible.

Assume first that ~T(Xπ)(0, 1) 6= ∅. Every d-path p : ~I → Xπ from 0 to 1 yields the

order relation t1 ≤ t2, xj(t1) = ci1j1, xk(t2) = di2j2 , ; c, d = a, b ⇒ ci1j1 ≤ di2j2 compatible with

the relations defined above. In particular, the transitive hull is an order relation.

Now assume that ~T(Xπ)(0, 1) = ∅, i.e., the forbidden regions F̄i give rise to a dead-
lock. A deadlock arises as lower corner of a non-empty intersection of n hyperrectangles

among the Ri
πi(ji2)

(πi(ji1),πi(ji2)), 1 ≤ i ≤ k, 1 ≤ ji1 < ji2 ≤ n and the degenerate hyper-

rectangles R0
j , 1 ≤ j ≤ n.

A non-empty intersection gives rise to at least one chain of coordinates

ai1
πi1

(ji12 )
< bi2

πi2
(ji21 )
� ai2

πi2
(ji22 )

< bi3
πi3

(ji31 )
� · < · · · < · � air

πir−1(j
ir−1
2 )

with πis+1
(jis+1
1 ) = πjs(j

is
2 ) – since, at a deadlock, every aj coordinate is less (<) than

every bj-coordinate; and every contributing b-coordinate is � some a-coordinate corre-
sponding to the same obstruction – and equal ends since one cannot continue an infinite
number of times. This contradicts the partial order condition. �

It does not seem easy to check which of the k-tuples π = (π1, . . . ,πk) are compatible:
The relation generated by ≤ and by � defines a digraph Gπ on the boundary coordi-

nates aij, b
i
j; the k-tuple is compatible if and only if Gπ does not contain a directed cycle.

6. MODELS FOR MORE GENERAL TRACE SPACES

6.1. Trace spaces in products of digraphs corresponding to non-linear programs. So
far, we have only looked at model spaces corresponding to concurrent linear programs,
without branchings, mergings and loops. More realistic models can be investigated
using more or less the same tools: Let Γ = ∏n

j=1 Γj denote a product of directed graphs

(brachings, mergings and loops allowed); each Γj represents a program run by a single
processor. The Γj are regarded as d-spaces (realizations of pre-cubical sets of dimension
one), and Γ is given the product structure: as an n-dimensional pre-cubical complex
with d-space structure[11].

A directed interval Jj from aj to bj in the geometric realization of a component Γj is

uniquely given by the image pj(I) of a trace pj ∈ ~T(Γj)(aj, bj). A (generalized) hyperrect-
angle in Γ is a product R = ∏j Jj ⊆ ∏j Γj = Γ of such directed intervals. A forbidden

region F =
⋃

i R
i is the union of such generalized hyperrectangles, and the state space

X = Γ \ F is its complement.

The aim is to analyse the space of d-paths ~P(X)(x, y) ⊆ ~P(Γ)(x, y) (or the space of

traces ~T(X)(x, y) homotopy equivalent to it) between two points x = (x1, x2, . . . , xn), y =
(y1, y2, . . . , yn) in the space X. First, we have a look at ~T(Γ)(x, y) and then, we will use
the map induced on traces by the inclusion map iX : X →֒ Γ.
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For a directed graph – no cubes of higher dimension supporting homotopies avail-
able – dihomotopy of d-paths (with fixed end points) is equivalent to reparametrization

equivalence, cf. [4]. In particular, each factor ~T(Γj)(xj, yj) is discrete; every component
is represented by a (reparametrization equivalence class of) a particular directed path
from xj to yj. The product structure of Γ yields:

Lemma 6.1. ~T(Γ)(x, y) ≃ ∏ ~T(Γj)(xj, yj); in particular, ~T(Γ)(x, y) is discrete.

Proof. The d-space structure and the dihomotopy relations factor:
~T(Γ) ≃ ~P(Γ) ∼= ∏ ~P(Γj) ≃ ∏ ~T(Γj). �
Remark 6.2. To enumerate the components (=traces) of the space of d-paths in a directed
graph Γ, one should first reduce it to normal form N(Γ): Vertices with valency (1,−1)
– one ingoing and one outgoing arrow, different from each other – are suppressed; the
two arrows are concatenated to one. The normal form N(Γ) does no longer have such
vertices.

Attach a unique label to each arrow in a directed graph Γ in normal form and form

words in these labels along concatenable arrows. Then ~T(Γ) corresponds to the discrete

set of such words; ~T(Γ)(x, y) to the words starting and ending with one or several spe-
cific labels, depending on whether x, y correspond to vertices or to points on a directed
edge. There is no need to distinguish between points on the same edge.

Each component C ∈ ~T(Γ)(x, y) can thus be represented by an n-tuple of (traces of)

specific d-paths cj ∈ ~P(Γj)(xj, yj). As representatives, we choose cj ∈ ~R(Γj)(xj, yj) ⊂
~P(Γj)(xj, yj) to be regular (i.e., locally injective, cf. [4])); every other d-path in ~P(Γj)(xj, yj)
dihomotopic to cj is then a reparametrization cj ◦ ϕj of cj with ϕj ∈ ~P(~I)(0, 1) an (increas-

ing) d-path in the standard ordered unit interval~I ([4], Theorem 3.6 and Proposition 3.8).

The d-paths cj altogether define a d-map c : ~In → Γ by c(t1, . . . , tn) = [c1(t1), . . . , cn(tn)],
and

Lemma 6.3. The d-map c : ~In → Γ induces a homeomorphism

c◦ : ~T(~In)(0, 1) → C ⊂ ~T(Γ)(x, y), p 7→ c ◦ p. �
Given such a component C ∈ π0(~T(Γ)) ∼= ∏ π0(~T(Γj)), the following two questions

arise naturally:

(1) Does C lift to X (i.e., can it be represented by an – interleaving – d-path in X
rather than in Γ)?

(2) Determine the topology of i−1X (C), i.e., of the space of all d-paths in X whose pro-
jections to the Γj are (reparametrizations of) these specified paths (“interleavings
of these execution paths”).

Every directed interval J =]aj, bj[⊂ Γj (in the sense above) pulls back to the standard

interval c−1j (]aj, bj[) ⊂ I – which is an open subinterval of I in the subspace topology,

possibly empty. To each generalized hyperrectangle Ri = ∏ Jij ⊂ Γ corresponds thus
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an (honest) hyperrectangle R̄i = c−1(Ri) = ∏ c−1j (Jij), possibly empty. The forbidden

region F ⊂ Γ corresponds to a forbidden region F̄ = c−1(F) =
⋃

i R̄
i ⊂ In, leaving

X̄ = In \ F̄ ⊂ In as state space (with the d-structure inherited from ~In). By restricting
the homeomorphism c◦ from Lemma 6.3, we obtain

Corollary 6.4. The d-map c : X̄ → X induces a homeomorphism

c◦ : ~T(X̄)(0, 1) → i−1X (C) ⊂ ~T(X)(x, y). �

Example 6.5. Let Γ1 = ~S1 denote a circular digraph and Γ2 = ~I a linear one. Let X =
(Γ1 × Γ2) \ J2 with J2 ⊂ (Γ1 × Γ2) an open rectangular hole. The component Cr in
~T(Γ1 × Γ2)(0, 1) corresponding to r + 1

2 spiral tours leads to a state space X̄r with r
rectangular holes with an exponential covering map back to X:

FIGURE 4. State spaces X (directed cylinder with hole) and X̄r.

Corollary 6.4 allows us to attack the questions above:

(1) is equivalent to: Is ~T(X̄)(0, 1) non-empty? This is the case if 0 is not contained in
the unsafe region corresponding to any deadlock in X̄ – this can be settled using
the techniques described in [6]; compare also [8].

(2) The topology of a nonempty space i−1X (C) ∼= ~T(X̄)(0, 1) can be analysed as that
of the prodsimplicial complex T(X̄)(0, 1) as described in Sections 4 and 5.

Remark 6.6. The components C ⊂ ~T(Γ)(−,−) form the morphisms of the fundamental
category ~π1(Γ) (composition induced by concatenation of paths) with the elements of
Γ as objects. In particular, loop components act on (the left and on the right) on com-
ponents with matching end points. In [8], the authors have shown that unsafe areas
corresponding to a specific deadlock point can look quite different for components with
the same end points. It should be interesting to investigate how the topology of the

spaces i−1X (C) behaves under composition with loops. For applications, it is essential to
find out whether there is an algorithm determining them in an “inductive” fashion.

6.2. Simplicial models for trace spaces in pre-cubical complexes. The methods used
in this paper can certainly be applied more generally. In [26], we investigated spaces
of d-paths in a non-self-linked pre-cubical complex X (with a compatible d-structure
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defined at first for every cube) and showed that, for all x0, x1 ∈ X, the path spaces
~P(X)(x0 , x1) are ELCX (equi locally convex) in the sense of Milnor’s [20]; hence that
they are locally contractible and possess the homotopy type of a CW-complex.

The main ingredient in the proof is the construction of a locally defined average map
µ : U → X defined on a neighbourhood U =

⋃
β Vβ × Vβ of the diagonal with Vβ the

open star neighbourhood of a vertex β in X. This average map plays a role very similar
to that of max in Section 2.

In particular, a directed sequence of adjacent vertices and their open star neighbour-
hoods gives rise to the contractible space of d-paths (or traces) progressing through that
sequence of neighbourhoods. The spaces of d-paths in all possible such sequences give
rise to a covering of the space of all d-paths (with given end points) by contractible sub-
spaces ([26], Proposition 3.16). Using the same method (and restrictions of the map µ
above), it can be shown that intersections of such subspaces (through intersections of
open stars of certain vertices) are empty or also contractible.

The nerve lemma ([18]) shows then, that spaces of d-paths (and thus of traces) in a
pre-cubical complex (with given end points) are homotopy equivalent to the nerve of

the covering described above. In particular, ~T(X)(x0 , x1) has an explicit structure of a
simplicial complex. To describe it explicitly, one needs to know which sets of sequences
of adjacent vertices give rise to intersections of open star neighbourhoods containing a
d-path.

Remark 6.7. More abstractly, one may describe a category of contractible cube paths in
semi-cubical complexes (with contractible trace spaces and such that all sub-cube paths
are contractible, as well) and then consider the induced category over X (objects = semi-
cubical maps from a contractible cube path into X respecting given end points). The
nerve of that category (or of any subcategory that covers all d-paths in X with given

end points) is then homotopy equivalent to ~T(X)(x0 , x1).
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6. L. Fajstrup, É. Goubault, and M. Raussen, Detecting Deadlocks in Concurrent Systems, CONCUR ’98;
Concurrency Theory (Nice, France) (D. Sangiorgi and R. de Simone, eds.), Lect. Notes Comp. Science,
vol. 1466, Springer-Verlag, September 1998, 9th Int. Conf., Proceedings, pp. 332 – 347.

7. , Algebraic topology and concurrency, Theor. Comput. Sci 357 (2006), 241–278, Revised version of
Aalborg University preprint, 1999.



30 MARTIN RAUSSEN

8. L. Fajstrup and S. Sokolowski, Infinitely running concurrents processes with loops from a geo-
metric viewpoint, Electronic Notes Theor. Comput. Sci. 39 (2000), no. 2, 19 pp., URL:
http://www.elsevier.nl/locate/entcs/volume39.html.
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